Article contents
Importance of Nanosensors: Feynman's Vision and the Birth of Nanotechnology
Published online by Cambridge University Press: 31 January 2011
Abstract
In his visionary 1959 lecture at Caltech, Richard P. Feynman foresaw the potential of the ability to manipulate matter at the atomic scale. In this article, adapted from Integrated Nanosensors, MRS Symposium Proceedings Volume 952E, edited by I.K. Schuller, Y. Bruynseraede, L.M. Lechuga, and E. Johnson (2007), Jozef T. Devreese (University of Antwerp) discusses implementations of Feynman's vision in the field of nanosensors and perspectives of its further development and applications.
Nanoparticles are unique tools as sensors. Particles with sizes at the nanoscale reveal physical properties that do not exist in bulk materials; these properties can operate well inside living cells. Nanosensors possess unique physical characteristics. Their sensitivity can be orders of magnitude better than that of conventional devices. Nanosensors possess such performance advantages as fast response and portability. State-of-the-art nanosensors are based on various advanced materials (quantum dots, nanoshells, nanopores, carbon nanotubes, etc.). Nanosensors furthermore allow for building an entirely new class of integrated devices that provide the elemental base for “intelligent sensors” capable of data processing, storage, and analysis. Advances can open unprecedented perspectives for the application of nanosensors in various fields, for example, as molecular-level diagnostic and treatment instruments in medicine and as networks of nanorobots for real-time monitoring of physiological parameters of a human body.
- Type
- Research Article
- Information
- MRS Bulletin , Volume 32 , Issue 9: The Evolution of Organometallic Complexes in Organic Light-Emitting Devices , September 2007 , pp. 718 - 725
- Copyright
- Copyright © Materials Research Society 2007
References
- 23
- Cited by