Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:33:42.077Z Has data issue: false hasContentIssue false

Importance of Nanosensors: Feynman's Vision and the Birth of Nanotechnology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In his visionary 1959 lecture at Caltech, Richard P. Feynman foresaw the potential of the ability to manipulate matter at the atomic scale. In this article, adapted from Integrated Nanosensors, MRS Symposium Proceedings Volume 952E, edited by I.K. Schuller, Y. Bruynseraede, L.M. Lechuga, and E. Johnson (2007), Jozef T. Devreese (University of Antwerp) discusses implementations of Feynman's vision in the field of nanosensors and perspectives of its further development and applications.

Nanoparticles are unique tools as sensors. Particles with sizes at the nanoscale reveal physical properties that do not exist in bulk materials; these properties can operate well inside living cells. Nanosensors possess unique physical characteristics. Their sensitivity can be orders of magnitude better than that of conventional devices. Nanosensors possess such performance advantages as fast response and portability. State-of-the-art nanosensors are based on various advanced materials (quantum dots, nanoshells, nanopores, carbon nanotubes, etc.). Nanosensors furthermore allow for building an entirely new class of integrated devices that provide the elemental base for “intelligent sensors” capable of data processing, storage, and analysis. Advances can open unprecedented perspectives for the application of nanosensors in various fields, for example, as molecular-level diagnostic and treatment instruments in medicine and as networks of nanorobots for real-time monitoring of physiological parameters of a human body.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Feynman, R.P., Eng. Sci. 23, 22 (1960). Also available at www.zyvex.com/nanotech/feynman.html (accessed August 2007).Google Scholar
2. Various photographs of the McLellan micromotor are archived on the Web at the following URLs: http://archives.caltech.edu/ search_catalog.cfm?results_file=Detail_View=1=0=McLellan===; http://archives.caltech.edu/search_ catalog.cfm?results_file=Detail_View=1=1= McLellan===; http://archives.caltech.edu/search_catalog. cfm?results_file=Detail_View=1 =2=McLellan===; http:// archives.caltech.edu/search_catalog.cfm? results_file=Detail_View= 1=3=McLellan ===; http://news.bbc.co.uk/2/hi/science/nature/ 3785509.stm/ (accessed August 2007).Google Scholar
4.Fennimore, A.M., Yuzvinsky, T.D., Han, W.-Q., Fuhrer, M.S., Cumings, J., Zettl, A., Nature 424, 408 (2003).CrossRefGoogle Scholar
5.Bennewitz, R., Crain, J.N., Kirakosian, A., Lin, J.-L., McChesney, J.L., Petrovykh, D.Y., Himpsel, F.J., Nanotechnology 13, 499 (2002).CrossRefGoogle Scholar
6.Himpsel, F.J., “Nanoscale Memory,” http:// uw.physics.wisc.edu/∼himpsel/memory.html (accessed August 2007).Google Scholar
7.Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., Halas, N.J., Appl. Phys. Lett. 82, 257 (2003).CrossRefGoogle Scholar
8.Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J., Nano Lett. 6, 827 (2006).CrossRefGoogle Scholar
9.Liao, H., Nehl, C.L., Hafner, J.H., Nanomedicine 1, 201 (2006).CrossRefGoogle Scholar
10.Herrera, A.P., Resto, O., Briano, J.G., Rinaldi, C., Nanotechnology 16, S618 (2005).CrossRefGoogle Scholar
11. International Human Genome Sequencing Consortium, “Initial Sequencing and Analysis of the Human Genome,” Nature 409, 860 (2001).CrossRefGoogle Scholar
12.Jiang, J., Tsao, S., O'Sullivan, T., Zhang, W., Lim, H., Sills, T., Mi, K., Razeghi, M., Brown, G.J., Tidrow, M.Z., Appl. Phys. Lett. 84, 2166 (2004).CrossRefGoogle Scholar
13.Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Nature Mater. 4, 435 (2005).CrossRefGoogle Scholar
14.Fomin, V.M., Gladilin, V.N., Devreese, J.T., Pokatilov, E.P., Balaban, S.N., Klimin, S.N., Phys. Rev. B 57, 2415 (1998).CrossRefGoogle Scholar
15.Fonoberov, V.A., Pokatilov, E.P., Fomin, V.M., Devreese, J.T., Phys. Rev. Lett. 92, 127402 (2004).CrossRefGoogle Scholar
16.Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T., Wang, T.-H., Nature Mater. 4, 826 (2005).CrossRefGoogle Scholar
17.Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C., Nature Mater. 2, 537 (2003).CrossRefGoogle Scholar
18.Storm, A.J., Chen, J.H., Zandbergen, H.W., Dekker, C., Phys. Rev. E 71, 051903 (2005).CrossRefGoogle Scholar
19.Stampfer, K.J., Jungen, A., Hierold, C., IEEE Sens. J. 6, 613 (2006).CrossRefGoogle Scholar
20. SENSATION 2nd Newsletter ( January 14, 2005) p. 6. Also available on the Web at URL www.sensation-eu.org/pdf/SENSATION_2nd_Newsletter.pdf (accessed August 2007).Google Scholar
21.Buxton, D.B., Lee, S.C., Wickline, S.A., Ferrari, M., Circulation 108, 2737 (2003).CrossRefGoogle Scholar
22.Barone, P.W., Baik, S., Heller, D.A., Strano, M.S., Nature Mater. 4, 86 (2005).CrossRefGoogle Scholar
23.Heller, D.A., Jeng, E.S., Yeung, T.-K., Martinez, B.M., Moll, A.E., Gastala, J.B., Strano, M.S., Science 311, 508 (2006).CrossRefGoogle Scholar
24.Heller, D.A., “Single-Walled Carbon Nanotubes Wrapped with DNA Serve as Sensors in Living Cells,” in Nanotechnology News ( January 31, 2006). Also available on the Web at URL www.azonano.com/news.asp?newsID=1800 (accessed August 2007).Google Scholar
25.Ziegler, K.J., Trends Biotechnol. 23, 440 (2005).CrossRefGoogle Scholar
26.Blau, W.J., Fleming, A.J., Science 304, 1457 (2004).CrossRefGoogle ScholarPubMed
27.Freitas, R.A. Jr., Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Georgetown, TX, 1999).Google Scholar
28.Lent, C.S., Tougaw, C.S., Porod, W., Bernstein, G.H., Nanotechnology 4, 49 (1993).CrossRefGoogle Scholar
29.Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W., J. Appl. Phys. 85, 4283 (1999).CrossRefGoogle Scholar
30.Staedter, T., “Dermal Display Gets under the Skin,” www.unexplained-mysteries.com/forum/lofiversion/index.php/t51568.html (accessed August 2007).Google Scholar
31.Butler, D., Nature 440, 402 (2006).CrossRefGoogle Scholar