Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:01:41.284Z Has data issue: false hasContentIssue false

Imperceptible organic electronics

Published online by Cambridge University Press:  02 February 2017

Takao Someya
Affiliation:
Department of Electrical and Electronic Engineering, School of Engineering, The University of Tokyo, Japan; and Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, Japan; [email protected]
Siegfried Bauer
Affiliation:
Soft Matter Physics, Johannes Kepler University, Austria; [email protected]
Martin Kaltenbrunner
Affiliation:
Soft Matter Physics Department, Soft Electronics Laboratory, Johannes Kepler University, Austria; [email protected]
Get access

Abstract

A wide range of materials and material combinations, from hard and brittle to soft and elastic, is now available for the design of ultraflexible organic electronic circuits. Potential applications range from large-area active-matrix sensor arrays to displays, usable in next-generation smart appliances for mobile health, sports, and well-being. Weight and flexibility dominate the mechanical response and perception of such electronic skins, and have been developed into key figures of merit in circuit design. We review the design of thin (0.3–3 µm), ultralight (0.7–6 g/m2) large-area “imperceptible” electronic foils employing low-cost fabrication techniques compatible with mass production.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wagner, S., Bauer, S., MRS Bull. 37 (3), 207 (2012).Google Scholar
Kim, D.H., Lu, N., Ma, R., Kim, Y.S., Kim, R.H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Science 333 (6044), 838 (2011).Google Scholar
Hwang, S.W., Tao, H., Kim, D.H., Cheng, H., Song, J.K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.S., Song, Y.M., Science 337 (6102), 1640 (2012).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Nature 499 (7459), 458 (2013).Google Scholar
Suo, Z., Ma, E.Y., Gleskova, H., Wagner, S., Appl. Phys. Lett. 74 (8), 1177 (1999).Google Scholar
Weimer, P.K., Proc. IRE 50 (6), 1462 (1962).Google Scholar
Brody, T.P., Page, D.J., Electronics 41, 100 (1968).Google Scholar
Brody, T.P., IEEE Trans. Electron Devices 31 (11), 1614 (1984).Google Scholar
Ray, K.A., IEEE Trans. Aerosp. Electron. Syst. 3, 107 (1967).CrossRefGoogle Scholar
Ma, E.Y., Wagner, S., Appl. Phys. Lett. 74, 2661 (1999).Google Scholar
Sekitani, T., Iba, S., Kato, Y., Noguchi, Y., Someya, T., Sakurai, T., Appl. Phys. Lett. 87 (17), 173502 (2005).CrossRefGoogle Scholar
Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A., Science 320 (5875), 507 (2008).Google Scholar
Sekitani, T., Zschieschang, U., Klauk, H., Someya, T., Nat. Mater. 9, 1015 (2010).Google Scholar
Kaltenbrunner, M., White, M.S., Glowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., Bauer, S., Nat. Commun. 3, 770 (2012).Google Scholar
Drack, M., Graz, I., Sekitani, T., Someya, T., Kaltenbrunner, M., Bauer, S., Adv. Mater. 27, 34 (2015).Google Scholar
Khang, D.Y., Jiang, H.Q., Huang, Y., Rogers, J.A., Science 311, 208 (2006).Google Scholar
Rogers, J.A., Lagally, M.G., Nuzzo, R.G., Nature 477, 45 (2011).CrossRefGoogle Scholar
Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.-J., Geddes, J.B. III, Xiao, J., Wang, S., Huang, Y., Rogers, J.A., Nature 454, 748 (2008).CrossRefGoogle Scholar
Kim, D.-H., Ghaffari, R., Lu, N., Rogers, J.A., Annu. Rev. Biomed. Eng. 14, 113 (2012).Google Scholar
Kim, D.-H., Lu, N., Huang, Y., Rogers, J.A., MRS Bull. 37, 226 (2012).Google Scholar
Salvatore, G.A., Münzenrieder, N., Kinkeldei, T., Petti, L., Zysset, C., Strebel, I., Büthe, L., Tröster, G., Nat. Commun. 5, 2982 (2014).Google Scholar
Münzenrieder, N., Cantarella, G., Vogt, C., Petti, L., Büthe, L., Salvatore, G.A., Fang, Y., Andri, R., Lam, Y., Libanori, R., Widner, D., Adv. Electron. Mater. 1 (3), 2199–160x (2015).Google Scholar
Karnaushenko, D., Münzenrieder, N., Karnaushenko, D.D., Koch, B., Meyer, A.K., Baunack, S., Petti, L., Tröster, G., Makarov, D., Schmidt, O.G., Adv. Mater. 27 (43), 6797 (2015).CrossRefGoogle Scholar
Petti, L., Münzenrieder, N., Vogt, C., Faber, H., Büthe, L., Cantarella, G., Bottacchi, F., Anthopoulos, T.D., Tröster, G., Appl. Phys. Rev. 3, 021303 (2016).Google Scholar
Choi, M.K., Yang, J., Kang, K., Kim, D.C., Choi, C., Park, C., Kim, S.J., Chae, S.I., Kim, T.H., Kim, J.H., Hyeon, T., Nat. Commun. 6, 7149 (2015).Google Scholar
Lee, H., Lee, Y., Song, C., Cho, H.R., Ghaffari, R., Choi, T.K., Kim, K.H., Lee, Y.B., Ling, D., Lee, H., Yu, S.J., Nat. Commun. 6, 10059 (2015).CrossRefGoogle Scholar
Kim, J., Son, D., Lee, M., Song, C., Song, J.K., Koo, J.H., Lee, D.J., Shim, H.J., Kim, J.H., Lee, M., Hyeon, T., Sci. Adv. 2 (1), e1501101 (2016).Google Scholar
Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Nat. Nanotechnol. 11, 566 (2016).Google Scholar
Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Nat. Nanotechnol. 8 (2), 100 (2013).Google Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).Google Scholar
Cerda, E., Mahadevan, L., Phys. Rev. Lett. 90 (7), 074302 (2003).Google Scholar
Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M., Nature 393 (6681), 146 (1998).Google Scholar
Lacour, S.P., Wagner, S., Huang, Z.Y., Suo, Z., Appl. Phys. Lett. 82, 2404 (2003).CrossRefGoogle Scholar
Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J., Zhao, X., Nat. Mater. 12 (4), 321 (2013).Google Scholar
Cao, C., Chan, H.F., Zang, J., Leong, K.W., Zhao, X., Adv. Mater. 26 (11), 1763 (2014).Google Scholar
Hammock, M.L., Chortos, A., Tee, B.C.K., Tok, J.B.H., Bao, Z., Adv. Mater. 25, 5997 (2013).Google Scholar
Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., Adv. Mater. 26, 149 (2014).Google Scholar
Kaltenbrunner, M., Adam, G., Głowacki, E.D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., Schuette White, M., Sariciftci, N.S., Bauer, S., Nat. Mater. 14, 1032 (2015).Google Scholar
White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., Sariciftci, N.S., Nat. Photonics 7, 811 (2013).Google Scholar
Melzer, M., Kaltenbrunner, M., Makarov, D., Karnaushenko, D., Karnaushenko, D., Sekitani, T., Someya, T., Schmidt, O.G., Nat. Commun. 6, 6080 (2015).Google Scholar
Melzer, M., Mönch, J.I., Makarov, D., Zabila, Y., Bermúdez, G.S.C., Karnaushenko, D., Baunack, S., Bahr, F., Yan, C., Kaltenbrunner, M., Schmidt, O.G., Adv. Mater. 27, 1274 (2014).Google Scholar
Münzenrieder, N., Karnaushenko, D., Petti, L., Cantarella, G., Vogt, C., Büthe, L., Karnaushenko, D.D., Schmidt, O.G., Makarov, D., Tröster, G., Adv. Electron. Mater. 2 (8), (2016).Google Scholar
Makarov, D., Melzer, M., Karnaushenko, D., Schmidt, O.G., Appl. Phys. Rev. 3 (1), 011101 (2016).CrossRefGoogle Scholar
Moser, R., Kettlgruber, G., Siket, C.M., Drack, M., Graz, I.M., Cakmak, U., Major, Z., Kaltenbrunner, M., Bauer, S., Adv. Sci. 3, 1500396 (2016).Google Scholar
Ware, T., Simon, D., Arreaga-Salas, D.E., Reeder, J., Rennaker, R., Keefer, E.W., Voit, W., Adv. Funct. Mater. 22 (16), 3470 (2012).Google Scholar
Reeder, J., Kaltenbrunner, M., Ware, T., Arreaga-Salas, D., Avendano-Bolivar, A., Yokota, T., Inoue, Y., Sekino, M., Voit, W., Sekitani, T., Someya, T., Adv. Mater. 26, 4967 (2014).Google Scholar
Chortos, A., Liu, J., Bao, Z., Nat. Mater. 15, 937 (2016).Google Scholar
Liu, J., Fu, T.M., Cheng, Z., Hong, G., Zhou, T., Jin, L., Duvvuri, M., Jiang, Z., Kruskal, P., Xie, C., Suo, Z., Fang, J., Lieber, C.M., Nat. Nanotechnol. 10, 629 (2015).Google Scholar
Minev, I.R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E.M., Gandar, J., Capogrosso, M., Milekovic, T., Asboth, L., Torres, R.F., Vachicouras, N., Liu, Q., Pavlova, N., Duis, S., Larmagnac, A., Vörös, J., Micera, S., Suo, Z., Courtine, G., Lacour, S.P., Science 347, 159 (2015).Google Scholar
Tee, B.C.K., Chortos, A., Berndt, A., Nguyen, A.K., Tom, A., McGuire, A., Lin, Z.C., Tien, K., Bae, W.-G., Wang, H., Mei, P., Chou, H.-H., Cui, B., Deisseroth, K., Ng, T.N., Bao, Z., Science 350, 313 (2015).CrossRefGoogle Scholar
Jeong, J.W., McCall, J.G., Shin, G., Zhang, Y., Al-Hasani, R., Kim, M., Li, S., Sim, J.Y., Jang, K.I., Shi, Y., Hong, D.Y., Liu, Y., Schmitz, G.P., Xia, L., He, Z., Gamble, P., Ray, W.Z., Huang, Y., Bruchas, M.R., Rogers, J.A., Cell 162, 662 (2015).Google Scholar
Park, S.I., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J., Yoon, J., Jang, K.-I., Samineni, V.K., Norman, M., Grajales-Reyes, J.G., Vogt, S.K., Sundaram, S.S., Wilson, K.M., Ha, J.S., Xu, R., Pan, T., Kim, T., Huang, Y., Montana, M.C., Golden, J.P., Bruchas, M.R., Gereau, R.W., Rogers, J.A., Nat. Biotechnol. 33, 1280 (2015).CrossRefGoogle Scholar
Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervé, T., Sanaur, S., Bernard, C., Malliaras, G.G., Nat. Commun. 4, 1575 (2013).Google Scholar
Schwartz, G., Tee, B.C.-K., Mei, J., Appleton, A.L., Kim, D.H., Wang, H., Bao, Z., Nat. Commun. 4, 1859 (2013).Google Scholar
Yokota, T., Inoue, Y., Terakawa, Y., Reeder, J., Kaltenbrunner, M., Ware, T., Yang, K., Mabuchi, K., Murakawa, T., Sekino, M., Voit, W., Proc. Natl. Acad. Sci. U.S.A. 112 (47), 14533 (2015).CrossRefGoogle Scholar
Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., Nat. Nanotechnol. 11, 472 (2016).Google Scholar
Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., Someya, T., Sci. Adv. 2 (4), e1501856 (2016).CrossRefGoogle Scholar
Reuveny, A., Lee, S., Yokota, T., Fuketa, H., Siket, C.M., Lee, S., Sekitani, T., Sakurai, T., Bauer, S., Someya, T., Adv. Mater. 28, 3298 (2016).Google Scholar
Lee, W., Kim, D., Rivnay, J., Matsuhisa, N., Lonjaret, T., Yokota, T., Yawo, H., Sekino, M., Malliaras, G.G., Someya, T., Adv. Mater. 28, 9869 (2016).Google Scholar
Sekitani, T., Yokota, T., Kuribara, K., Kaltenbrunner, M., Fukushima, T., Inoue, Y., Sekino, M., Isoyama, T., Abe, Y., Onodera, H., Someya, T., Nat. Commun. 7 (2016).Google Scholar
Lee, S., Inoue, Y., Kim, D., Reuveny, A., Kuribara, K., Yokota, T., Reeder, J., Sekino, M., Sekitani, T., Abe, Y., Someya, T., Nat. Commun. 5, 5898 (2014).Google Scholar
Reuveny, A., Yokota, T., Shidachi, R., Sekitani, T., Someya, T., Org. Electron. 26, 279 (2015).Google Scholar
Nawrocki, R.A., Matsuhisa, N., Yokota, T., Someya, T., Adv. Electron. Mater. 2, 1500452 (2016).Google Scholar
Ko, S.H., Pan, H., Grigoropoulos, C.P., Fréchet, J.M., Luscombe, C.K., Poulikakos, D., Appl. Phys. A 92 (3), 579 (2008).Google Scholar
Benight, S.J., Wang, C., Tok, J.B.H., Bao, Z., Prog. Polym. Sci. 38, 1961 (2013).Google Scholar
Printz, A.D., Lipomi, D.J., Appl. Phys. Rev. 3 (2), 021302 (2016).Google Scholar
Cherenack, K., van Pieterson, L., J. Appl. Phys. 112, 091301 (2012).Google Scholar
Chortos, A., Bao, Z., Mater. Today 17, 321 (2014).Google Scholar
Takeda, Y., Yoshimura, Y., Shiwaku, R., Tran, L.T., Sekine, T., Mizukami, M., Kumaki, D., Tokito, S., Fukuda, K., Nat. Commun. 5, 1 (2014).Google Scholar
Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., Malliaras, G.G., Nat. Commun. 4, 2133 (2013).Google Scholar
Khodagholy, D., Gelinas, J.N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G.G., Buzsáki, G., Nat. Neurosci. 18, 310 (2014).Google Scholar
Cao, X., Cao, Y., Zhou, C., ACS Nano 10, 199 (2016).Google Scholar
Yi, H.T., Payne, M.M., Anthony, J.E., Podzorov, V., Nat. Commun. 3, 1259 (2012).Google Scholar
Sun, J.Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z., Nature 489, 133 (2012).Google Scholar
Keplinger, C., Sun, J.Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z., Science 341, 984 (2013).Google Scholar
Lin, S., Yuk, H., Zhang, T., Parada, G.A., Koo, H., Yu, C., Zhao, X., Adv. Mater. 28, 4497 (2016).Google Scholar