Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T18:12:10.289Z Has data issue: false hasContentIssue false

Holographic-Data-Storage Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In holographic data storage, a photo-sensitive medium is exposed to the interference pattern that is generated when an object beam, with an input data page encoded in the spatial profile of the beam, is intersected by a second, coherent laser beam. The photosensitive medium replicates these interference fringes as a change in optical absorption, refractive index, or thickness. Data are retrieved from the medium by exposing it to light from just one of the beams, which is then diffracted from the stored fringe pattern to reconstruct the other beam, including all the information that had been in the input data page. For a material of sufficient thickness, a large number of interference patterns, each identified by a different grating vector, can be stored or “multiplexed” in the same volume element, with negligible crosstalk between the individual interference patterns. Multiplexing of a large number of pages in the same volume element of the recording medium can be accomplished in several ways—for example by varying the angle between object and reference beam or the wavelength of both beams. Given no other limiting factors, the number of holograms that can be multiplexed in one volume element is directly proportional to the product of the thickness of the medium and its refractive index—that is, materials with optical thicknesses of the order of several millimeters are desirable.

By its very nature, the holographic-storage mechanism distributes the stored information redundantly throughout the recording volume.

Type
Ultrahigh-Density Information-Storage Materials
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.van Heerden, P.J., “Theory of Optical Information Storage in Solids,” Appl. Opt. 2 (1963) p. 393.CrossRefGoogle Scholar
2.Hesselink, L. and Bashaw, M., “Optical Memories Implemented With Photorefractive Media,” Opt. Quantum Electron. 25 (1993) p. 611.CrossRefGoogle Scholar
3.Huignard, J.P., D'Auria, L., and Spitz, E., “Holographic Read-Write Memory and Capacity Enhancement by 3-D Storage,” IEEE Trans. Magn. 9 (1973) p. 83.Google Scholar
4.Rakuljic, G., Leyva, V., and Yariv, A., “Optical Data Storage by Using Orthogonal Wavelength-Multiplexed Volume Holograms,” Opt. Lett. 17 (1992) p. 1471.CrossRefGoogle ScholarPubMed
5.Chen, F.S., Macchia, J.T. La, and Frazer, D.B., “Holographic Storage in Lithium Niobate,” Appl. Phys. Lett. 13 (1968) p. 223.CrossRefGoogle Scholar
6.Blotekjaer, K., “Limitations on Holographic Storage Capacity in Photochromic and Photorefractive Media”, Appl. Opt. 18 (1979) p. 57.CrossRefGoogle ScholarPubMed
7.Maniloff, E.S. and Johnson, K.M., “Maximized Photorefractive Holographic Storage,” J. Appl. Phys. 70 (1991) p. 4702.CrossRefGoogle Scholar
8.Brady, D. and Psaltis, D., “Control of Volume Holograms,” J. Opt. Soc. Am. A 9 (7) (1992) p. 1167.CrossRefGoogle Scholar
9.Valley, G.C. and Klein, M.B., “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22 (1983) p. 704.CrossRefGoogle Scholar
10.Lundquist, P.M., Poga, C., DeVoe, R.G., Jia, Y., Moerner, W.E., et al. “Holographic Digital Data Storage in a Photorefractive Polymer,” Opt. Lett. in press.Google Scholar
11.Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., and Nassau, K., “Optically Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9 (1966) p. 72.CrossRefGoogle Scholar
12.Townsend, R.L. and LaMacchia, J.T., “Optically Induced Refractive Index Changes in BaTiO3,” J. Appl. Phys. 41 (1970) p. 5188.CrossRefGoogle Scholar
13.Wechsler, B.A., Klein, M.B., Nelson, C.C., and Schwartz, R.N., “Spectroscopic and Photorefractive Properties of Rhodium Doped Barium Titanate,” Opt. Lett. 19 (1994) p. 536.CrossRefGoogle ScholarPubMed
14.Rakuljic, G.A., Yariv, A., and Neurgoankar, R.R., “Photorefractive Properties of Undoped, Cerium-Doped, and Iron-Doped Single-Crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25 (1986) p. 1212.CrossRefGoogle Scholar
15.Ducharme, S., Scott, J.C., Twieg, R.J., and Moerner, W.E., Phys. Rev. Lett. 66 (1991) p. 1846.CrossRefGoogle Scholar
16.Wortmann, R., Lundquist, P.M., Twieg, R.J., Gletneky, C., Moylan, C.R., Jia, Y., DeVoe, R.G., Burland, D.M., Bernal, M-P., Coufal, H., Grygier, R.K., Hoffnagle, J.A., Jefferson, C.M., Macfarlane, R.M., Shelby, R.M., and Sincerbox, G.T., Appl. Phys. Lett. in press.Google Scholar
17.Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., and Vinetskii, V.L., “Holographic Storage in Electrooptic Crystals. I. Steady State,” Ferroelectrics 22 (1979) p. 949.CrossRefGoogle Scholar
18.Feinberg, J., Heiman, D. Jr., Tanguay, A.R., and Hellwarth, R.W., “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51 (3) (1980) p. 1297.CrossRefGoogle Scholar
19.Kogelnik, H., “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48 (9) (1969) p. 2909.CrossRefGoogle Scholar
20.Burr, G.W., Mok, F.H., and Psaltis, D., “Storage of 10,000 Holograms in LiNbO3: Fe,” CLEO 1994, paper CMB7 (1994) p. 9.Google Scholar
21.Burr, G.W., Mok, F.H., and Psaltis, D., “Large Scale Volume Holographic Storage in the Long Interaction Length Architecture,” Proc. SPIE, vol. 2297 (1994).Google Scholar
22.Mok, F.H., Burr, G.W., and Psaltis, D., “A System Metric for Holographic Memory Systems,” in Opt. Lett. in press.Google Scholar
23.Mok, F. (private communication).Google Scholar
24.Amodei, J.J. and Staebler, D.L., “Holographic Pattern Fixing in Electro-optic Crystals,” Appl. Phys. Lett. 18 (12) (1971) p. 540.CrossRefGoogle Scholar
25.Staebler, D.L., “Oxide Optical Memories: Photochromism and Index Change,” J. Solid State Chem. 12 (1975) p. 177.CrossRefGoogle Scholar
26.Amodei, J.J., Phillips, W., and Staebler, D.L., “Improved Electrooptic Materials and Fixing Techniques for Holographic Recording,” Appl. Opt. 11 (2) (1972) p. 390.CrossRefGoogle ScholarPubMed
27.Staebler, D.L. and Amodei, J.J., “Thermally Fixed Holograms in LiNbO3,” Ferroelectrics 3 (1972) p. 107.CrossRefGoogle Scholar
28.Bobrinev, V.I., Vasil'eva, Z.G., Gulanyan, E. Kh., and Mikaelyan, A.L., “Multiple Recording and Fixation of Holograms in Lithium Niobate Crystals Doped with Iron,” JETP Lett. 18 (5) (1973) p. 159.Google Scholar
29.Kulikov, V.V. and Stepanov, S.I., “Mechanisms of Holographic Recording and Thermal Fixing in Photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21 (11) (1979) p. 1849.Google Scholar
30.Sommerfeldt, R., Rupp, R.A., Vormann, H., and Krätzig, E., “Thermal Fixing of Volume Phase Holograms in LiNbO3: Cu,” Phys. Status Solidi A 99 (1987) p. k15.CrossRefGoogle Scholar
31.Montemezzani, G. and Gunter, P., “Thermal Fixing Impure and Doped KNbO3 Crystals,” J. Opt. Soc. Am. B 7 (12) (1990) p. 2323.CrossRefGoogle Scholar
32.Micheron, F. and Bismuth, G., “Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials,” Appl. Phys. Lett. 20 (2) (1972) p. 79.CrossRefGoogle Scholar
33.Kirillov, D. and Feinberg, J., “Fixable Complementary Gratings in Photorefractive BaTiO3,” Opt. Lett. 16 (19) (1991) p. 1520.CrossRefGoogle Scholar
34.Herriau, J.P. and Huignard, J.P., “Hologram Fixing Process at Room Temperature in Photorefractive Bi12SiO20 Crystals,” Appl. Phys. Lett. 49 (1986) p. 1140.CrossRefGoogle Scholar
35.Arizmendi, L., “Thermal Fixing of Holographic Gratings in Bi12SiO20,” J. Appl. Phys. 65 (1989) p. 423.CrossRefGoogle Scholar
36.McCahon, S.W., Rytz, D., Valley, G.C., Klein, M.B., and Weschler, B.A., “Hologram Fixing in Bi12TiO20 Using Heating and an AC Electric Field,” Appl. Opt. 28 (1989) p. 1967.CrossRefGoogle Scholar
37.Leyva, V., Agranat, A., and Yariv, A., “Fixing of a Photorefractive Grating in KTa1−xNbxO3 by Cooling Through the Ferroelectric Phase Transition,” Opt. Lett. 16 (8) (1991) p. 554.CrossRefGoogle ScholarPubMed
38.Leyva, V., Engin, D., Tong, X., Tong, M., Yariv, A., and Agranat, A., “Fixing of Photorefractive Volume Holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20 (11) (1995) p. 1319.CrossRefGoogle ScholarPubMed
39.Vormann, H., Weber, G., Kapphan, S., and Krätzig, E., “Hydrogen as Origin of Thermal Fixing in LiNbO3: Fe,” Solid State Commun. 40 (1981) p. 543.CrossRefGoogle Scholar
40.Muller, R., Arizmendi, L., Carrascosa, M., and Cabrera, J.M., “Determination of H Concentration in LibO3 by Photorefractive Fixing,” Appl. Phys. Lett. 60 (26) (1992) p. 3212.CrossRefGoogle Scholar
41.Meyer, W., Wurfel, P., Munser, R., and Muller-Vogt, G., “Kinetics of Fixation of Phase Holograms in LiNbO3,” Phys. Status Solidi A 53 (1979) p. 171.CrossRefGoogle Scholar
42.Hertel, P., Ringhofer, K.H., and Sommerfeldt, R., “Theory of Thermal Hologram Fixing and Application to LiNbO3:Cu,” Phys. Status Solidi 104 (1987) p. 855.CrossRefGoogle Scholar
43.Carrascosa, M. and Agullo-Lopez, F., “Theoretical Modeling of the Fixing and Developing of Holographic Gratings in LiNbO3,” J. Opt. Soc. Am. B 7 (12) (1990) p. 2317.CrossRefGoogle Scholar
44.Yariv, A., Orlov, S., Rakuljic, G., and Leyva, V., “Holographic Fixing, Readout, and Storage Dynamics in Photorefractive Materials,” Opt. Lett. 20 (11) (1995) p. 1334.CrossRefGoogle ScholarPubMed
45.Orlov, S. and Yariv, A., “Long-Lifetime Hologram Fixing and Ionic Conductivity in Photorefractive Lithium Niobate,” CLEO-1996 (1996).Google Scholar
46.Oliver, J.R., Neurgoankar, R.R., and Cross, L.E., J. Appl. Phys. 64 (1988) p. 37.CrossRefGoogle Scholar
47.Micheron, F. and Bismuth, G., Appl. Phys. Lett. 23 (1973) p. 71.CrossRefGoogle Scholar
48.Thaxter, J.B. and Kestigian, M., Appl. Opt. 13 (1974) p. 913.CrossRefGoogle Scholar
49.Orlov, S., Psaltis, D., and Neurgoankar, R.R., Appl. Phys. Lett. 63 (1993) p. 2466.CrossRefGoogle Scholar
50.Qiao, Y., Orlov, S., Psaltis, D., and Neurgaonkar, R.R., “Electrical Fixing of Photorefractive Holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18 (1993) p. 1004.CrossRefGoogle Scholar
51.von der Linde, D., Glass, A.M., and Rogers, K.F., “Multi-photon Photorefractive Processes for Optical Storage in LiNbO3,” Appl. Phys. Lett. 25 (1974) p. 155.CrossRefGoogle Scholar
52.von der Linde, D., Glass, A.M., and Rogers, K.F., “Optical Storage Using Refractive Index Changes Induced by Two-Step Excitation,” J. Appl. Phys. 47 (1976) p. 217.CrossRefGoogle Scholar
53.Vormann, H. and Krätzig, E., “Two-Step Excitation in LiTaO3:Fe for Optical Data Storage,” Solid State Commun. 49 (1984) p. 843.CrossRefGoogle Scholar
54.Buse, K., Jermann, F., and Krätzig, E., “Two-step Photorefractive Hologram Recording in LiNbO3: Fe,” Ferroelectrics 141 (1993) p. 197.CrossRefGoogle Scholar
55.Buse, K., Holtmann, L., and Krätzig, E., “Activation of BaTiO3 for Infrared Holographic Recording,” Opt. Commun. 85 (1991) p. 183.CrossRefGoogle Scholar
56.Buse, K., Jermann, F., and Krätzig, E., “Infrared Holographic Recording in LiNbO3: Fe and LiNbO3,” Opt. Mater. 4 (1995) p. 237.CrossRefGoogle Scholar
57.Wittmann, G. and Macfarlane, R.M., “Photon-Gated Photoconductivity in Pr:YAG,” Opt. Lett. 21 (1996) p. 426.CrossRefGoogle ScholarPubMed
58.Bai, Y.S., Neurgoankar, R.R., and Kachru, R., Opt. Lett. in press.Google Scholar
59.Heanue, J., Bashaw, M., and Hesselink, L., “Volume Holographic Storage and Retrieval of Digital Data,” Science 265 (1994) p. 749.CrossRefGoogle ScholarPubMed
60.Bernal, M-P., Coufal, H., Grygier, R.K., Hoffnagle, J.A., Jefferson, C.M., Macfarlane, R.M., Shelby, R.M., Sincerbox, G.T., Wimmer, P., and Wittmann, G., “A Precision Tester for Studies of Holographic Optical Storage Materials and Recording Physics,” Appl. Opt. 35 (1996) p. 2360.CrossRefGoogle ScholarPubMed
61.Poga, C., Lundquist, P.M., Shelby, R.M., and Burland, D.M., “Polysiloxane-Based Photorefractive Polymers for Digital Holographic Data Storage,” Appl. Phys. Lett. submitted for publication.Google Scholar
62.Bashaw, M.C., Aharoni, A., and Hesselink, L., “Alleviation of Image Distortion Due to Striations in a Photorefractive Medium Using a Phase-Conjugated Reference Wave,” Opt. Lett. 17 (1992) p. 1149.CrossRefGoogle Scholar