Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T19:37:16.933Z Has data issue: false hasContentIssue false

High-Resolution-Electron-Microscopy Investigation of Nanosize Inclusions

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The behavior of solids in the nanometer size regime, as their dimensions approach the atomic scale, is of increasing fundamental and applied interest in materials research. Electronic, optical, magnetic, mechanical, or thermodynamic properties all may depend on the size and shape of the solid. As a result, in the nanoscale regime, size and shape may be used as design variables to tailor a material's properties such as giant magnetoresistance in multilayer films, or the optical properties in semiconductor nanocrystals. In most cases, the size dependence of properties is not well-understood. Nanophase materials constitute a new frontier in materials science, and accurate nanoscale characterization is extremely important in exploring this new frontier. In this area, transmission electron microscopy (TEM) plays a key role. Because of its unique ability to provide information on the structure and composition of internal interfaces in solids, TEM is particularly important in cases of buried nanophase structures such as small solid inclusions—that is, solid particles embedded within another solid.

Nanoscale inclusions have recently been shown to exhibit unusual melting behavior that depends strongly on their size and the embedding matrix. For example, small inclusions of Pb in SiO exhibit melting-point depressions of several hundred degrees, whereas similarsized Pb inclusions in aluminum have shown large increases in melting point. Although a full understanding of these effects is still lacking, it appears that they are related not just to inclusion size but also to their shape and interface structure.

Type
Nanoscale Characterization of Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For example, see MRS Bulletin XX (10) (1995).Google Scholar
2. For example, see MRS Bulletin XX (8) (1995); V.I. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature 370 (1994) p. 354.Google Scholar
3.Saka, H., Nishikawa, Y., and Imura, T., Philos. Mag. A 57 (1988) p. 895.CrossRefGoogle Scholar
4.Gråbaek, L., Bohr, J., Andersen, H.H., Johansen, A., Johnson, E., and Robinson, I.K., Phys. Rev. B 45 (1992) p. 2628.Google Scholar
5.Ben-David, T., Lereah, Y., Deutscher, G., Kofman, R., and Cheyssac, P., Philos. Mag. A 71 (1995) p. 1135.CrossRefGoogle Scholar
6.Kofman, R., Cheyssac, P., Aouaj, A., Lereah, Y., Deutscher, G., Ben-David, T., Penisson, J.M., and Bourret, A., Surf. Sci. 303 (1994) p. 231.CrossRefGoogle Scholar
7.Xiao, S.Q., Johnson, E., Hinderberger, S., Bourdelle, K.K., and Dahmen, U., J. Microsc. 180 (1995) p. 61.CrossRefGoogle Scholar
8.Xiao, S.Q., Paciornik, S., Kilaas, R., Johnson, E., and Dahmen, U., Proc. MSA 53 (1995) p. 646.Google Scholar
9.Dahmen, U., Xiao, S.Q., Paciornik, S., Johnson, E., and Johansen, A., Phys. Rev. Lett. 78 (1997) p. 471.CrossRefGoogle Scholar
10.Johnson, E., Hinderberger, S., Xiao, S.Q., Dahmen, U., and Johansen, A., J. Sci. 3 (1996) p. 279.Google Scholar
11.Johnson, E., Dahmen, U., Xiao, S.Q., and Johansen, A., Proc. MSA 54 (1996).Google Scholar
12.Dahmen, U., Johnson, E., Xiao, S.Q., and Johansen, A., J. Surf. Analysis 3 in press.Google Scholar
13.Winterbottom, W.L., Acta Metall. 15 (1967) p. 303.CrossRefGoogle Scholar
14.Lee, J.K. and Aaronson, H.I., Acta Metall. 23 (1975) pp. 799, 809.CrossRefGoogle Scholar
15.Roth, M., Weatherly, G.C., and Miller, W.A., Can. Met. Quarterly 14 (1975) p. 287.CrossRefGoogle Scholar
16.Moore, K.L., Chattopadhyay, K., and Cantor, B., Proc. R. Soc. London, Ser. A 414 (1987) p. 499.Google Scholar
17.Zhang, D.L. and Cantor, B., Scripta Metall. 24 (1990) p. 751.CrossRefGoogle Scholar
18.Moore, K.L., Zhang, D.L., and Cantor, B., Acta Metall. Mater. 38 (1990) p. 1327.CrossRefGoogle Scholar
19.Johnson, E., Gråbaek, L., Bohr, J., Johansen, A., Sarholt-Kristensen, L., and Andersen, H.H., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., Børgesen, P., and Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, 1990) p. 247.Google Scholar
20.Bourdelle, K.K., Johansen, A., Schmidt, B., Andersen, H.H., Johnson, E., Sarholt-Kristensen, L., Steenstrup, S., and Yu, L., Nucl. Instrum. Methods B 80/81 (1993) p. 317.CrossRefGoogle Scholar
21.Gråbaek, L., Bohr, J., Johnson, E., Johansen, A., Sarholt-Kristensen, L., and Andersen, H.H., Phys. Rev. Lett. 64 (1990) p. 934.CrossRefGoogle Scholar
22.Herring, C., Phys. Rev. 82 (1951) p. 87.CrossRefGoogle Scholar
23.Schmidt, B., MSc thesis, University of Copenhagen, 1992.Google Scholar
24. For example, see Clusters of Atoms and Molecules, edited by Haberland, H. (Springer, Berlin, 1994).Google Scholar