Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T14:01:16.608Z Has data issue: false hasContentIssue false

High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices

Published online by Cambridge University Press:  11 April 2018

Jan Frenzel
Affiliation:
Ruhr University Bochum, Germany; [email protected]
Gunther Eggeler
Affiliation:
Ruhr University Bochum, Germany; [email protected]
Eckhard Quandt
Affiliation:
Kiel University, Germany; [email protected]
Stefan Seelecke
Affiliation:
Saarland University, Germany; [email protected]
Manfred Kohl
Affiliation:
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany; [email protected]
Get access

Abstract

Pseudoelastic NiTi-based shape-memory alloys (SMAs) have recently received attention as candidate materials for solid-state refrigeration. The elastocaloric effect in SMAs exploits stress-induced martensitic transformation, which is associated with large latent heat. Most importantly, cyclic mechanical loading/unloading provides large adiabatic temperature drops exceeding 25 K at high process efficiencies. This article summarizes the underlying principles, important material parameters and process requirements, and reviews recent progress in the development of pseudoelastic SMAs with large coefficients of performance, as well as very good functional fatigue resistance. The application potential of SMA film and bulk materials is demonstrated for the case of cyclic tensile loading/unloading in prototypes ranging from miniature-scale devices to large-scale cooling units.

Type
Caloric Effects in Ferroic Materials
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fähler, S., Rößler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Müller, S., Quandt, E., Albe, K., Adv. Eng. Mater. 14, 10 (2012).CrossRefGoogle Scholar
Mañosa, L., Planes, A., Acet, M., J. Mater. Chem. A 1, 4925 (2013).CrossRefGoogle Scholar
Bonnot, E., Romero, R., Mañosa, L., Vives, E., Planes, A., Phys. Rev. Lett. 100, 125901 (2008).CrossRefGoogle Scholar
Miyazaki, S., Otsuka, K., ISIJ Int. 29, 353 (1989).CrossRefGoogle Scholar
Otsuka, K., Ren, X., Prog. Mater. Sci. 50, 511 (2005).CrossRefGoogle Scholar
Hornbogen, E., in Advanced Structural and Functional Materials, Bunk, W.G.J., Ed. (Springer Verlag, Köln, Germany, 1991), p. 133.CrossRefGoogle Scholar
Goetzler, W., Zogg, R., Young, J., Johnson, C., “Energy Savings Potential and RD&D Opportunities for Non-Vapor Compression HVAC Technologies” (Prepared for the US Department of Energy by Navigant Consulting Inc., 2014).Google Scholar
Bhattacharya, K., Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect (Oxford University Press, Oxford, UK, 2004).Google Scholar
Qian, S., Geng, Y., Wang, Y., Ling, J., Hwang, Y., Radermacher, R., Takeuchi, I., Cui, J., Int. J. Refrig. 64, 1 (2016).CrossRefGoogle Scholar
Wieczorek, A., Frenzel, J., Schmidt, M., Maaß, B., Seelecke, S., Schütze, A., Eggeler, G., Funct. Mater. Lett. 10, 1740001 (2017).CrossRefGoogle Scholar
Sehitoglu, H., Wu, Y., Ertekin, E., Scr. Mater. (2017), doi.org/10.1016/j.scriptamat.2017.05.017.Google Scholar
Wu, Y., Ertekin, E., Sehitoglu, H., Acta Mater. 135, 158 (2017).CrossRefGoogle Scholar
Ossmer, H., Lambrecht, F., Gultig, M., Chluba, C., Quandt, E., Kohl, M., Acta Mater. 81, 9 (2014).CrossRefGoogle Scholar
Kim, Y., Jo, M.-G., Park, J.-W., Park, H.-K., Han, H.N., Scr. Mater. 144, 48 (2018).CrossRefGoogle Scholar
Luo, D., Feng, Y., Verma, P., Energy 130, 500 (2017).CrossRefGoogle Scholar
Tusek, J., Engelbrecht, K., Eriksen, D., Dall’Olio, S., Tusek, J., Pryds, N., Nat. Energy 1, 16134 (2016).CrossRefGoogle Scholar
Schmidt, M., Schütze, A., Seelecke, S., Int. J. Refrig. 54, 88 (2015).CrossRefGoogle Scholar
Ossmer, H., Wendler, F., Gueltig, M., Lambrecht, F., Miyazaki, S., Kohl, M., Smart. Mater. Struct. 25, 085037 (2016).CrossRefGoogle Scholar
Chluba, C., Ge, W.W., de Miranda, R.L., Strobel, J., Kienle, L., Quandt, E., Wuttig, M., Science 348, 1004 (2015).CrossRefGoogle Scholar
Rahim, M., Frenzel, J., Frotscher, M., Pfetzing-Micklich, J., Steegmüller, R., Wohlschlögel, M., Mughrabi, H., Eggeler, G., Acta Mater. 61, 3667 (2013).CrossRefGoogle Scholar
Waitz, T., Kazykhanov, V., Karnthaler, H.P., Acta Mater. 52, 137 (2004).CrossRefGoogle Scholar
Delville, R., Malard, B., Pilch, J., Sittner, P., Schryvers, D., Int. J. Plast. 27, 282 (2011).CrossRefGoogle Scholar
Frenzel, J., Wieczorek, A., Opahle, I., Maaß, B., Drautz, R., Eggeler, G., Acta Mater. 90, 213 (2015).CrossRefGoogle Scholar
Frenzel, J., George, E.P., Dlouhy, A., Somsen, C., Wagner, M.F.X., Eggeler, G., Acta Mater. 58, 3444 (2010).CrossRefGoogle Scholar
Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z.Y., Takeuchi, I., Nat. Mater. 5, 286 (2006).CrossRefGoogle Scholar
Zarnetta, R., Takahashi, R., Young, M.L., Savan, A., Furuya, Y., Thienhaus, S., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y.S., Srivastava, V., James, R.D., Takeuchi, I., Eggeler, G., Ludwig, A., Adv. Funct. Mater. 20, 1917 (2010).CrossRefGoogle Scholar
Jaeger, S., Maaß, B., Frenzel, J., Schmidt, M., Seelecke, S., Kastner, O., Eggeler, G., Int. J. Mater. Res. 106, 1029 (2015).CrossRefGoogle Scholar
Zhang, Z.Y., James, R.D., Müller, S., Acta Mater. 57, 4332 (2009).CrossRefGoogle Scholar
Ball, J.M., James, R.D., Philos. Trans. R. Soc. A 338, 389 (1992).Google Scholar
Schmidt, M., Ullrich, J., Wieczorek, A., Frenzel, J., Schütze, A., Eggeler, G., Seelecke, S., Shape Mem. Superelast. 1, 132 (2015).CrossRefGoogle Scholar
Gu, H., Bumke, L., Chluba, C., Quandt, E., James, A.D., Mater. Today, https://doi.org/10.1016/j.mattod.2017.10.002.Google Scholar
Song, Y.T., Chen, X., Dabade, V., Shield, T.W., James, R.D., Nature 502, 85 (2013).CrossRefGoogle Scholar
Ni, X.Y., Greer, J.R., Bhattacharya, K., James, R.D., Chen, X., Nano Lett. 16, 7621 (2016).CrossRefGoogle Scholar
Chluba, C., Ge, W., Dankwort, T., Bechtold, C., de Miranda, R.L., Kienle, L., Wuttig, M., Quandt, E., Philos. Trans. R. Soc. A 374 (2016).CrossRefGoogle Scholar
Qian, S.X., Geng, Y.L., Wang, Y., Muehlbauer, J., Ling, J.Z., Hwang, Y.H., Radermacher, R., Takeuchi, I., Sci. Technol. Built Environ. 22, 500 (2016).CrossRefGoogle Scholar
Schmidt, M., Schütze, A., Seelecke, S., 2013 Proc. ASME Conf. Smart Mater. Adaptive Struct. Intell. Syst., Johnson, N., Ed. (ASME, New York, 2014), p. V001T04A014.Google Scholar
Schmidt, M., Schütze, A., Seelecke, S., 2014 Proc. ASME Conf. Smart Mater. Adaptive Struct. Intell. Syst., Zagrai, A., Ed. (ASME, New York, 2014), p. V002T04A013.Google Scholar
Schmidt, M., Kirsch, S.M., Seelecke, S., Schütze, A., Sci. Technol. Built Environ. 22, 475 (2016).CrossRefGoogle Scholar
Schmidt, M., Schütze, A., Seelecke, S., APL Mater. 4, 064107 (2016).CrossRefGoogle Scholar
Ossmer, H., Chluba, C., Gueltig, M., Quandt, E., Kohl, M., Shape Mem. Superelast. 1, 142 (2015).CrossRefGoogle Scholar
Wendler, F., Ossmer, H., Chluba, C., Quandt, E., Kohl, M., Acta Mater. 136, 105 (2017).CrossRefGoogle Scholar
Bruederlin, F., Ossmer, H., Wendler, F., Miyazaki, S., Kohl, M., J. Phys. D Appl. Phys. 50, 424003 (2017).CrossRefGoogle Scholar
Ossmer, H., Kohl, M., Nat. Energy 1, 16159 (2016).CrossRefGoogle Scholar