Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T13:11:48.935Z Has data issue: false hasContentIssue false

Growth of Optical Crystals by the Micro-Pulling-Down Method

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Feigelson, R.S., in Crystal Growth of Electronic Materials, Kaldis, E., Ed. (Elsevier Science, Amsterdam, 1985), p. 127.Google Scholar
2Fukuda, T., Rudolph, P., Uda, S., Eds., Fiber Crystal Growth from the Melt (Springer-Verlag, New York, 2004).CrossRefGoogle Scholar
3Yoon, D.H., Yonenaga, I., Fukuda, T., Ohnishi, N., J. Cryst. Growth 142, 339 (1994).CrossRefGoogle Scholar
4Yoshikawa, A., Nikl, M., Boulon, G., Fukuda, T., Opt. Mater. 30, 6 (2007).CrossRefGoogle Scholar
5Fukuda, T., Chani, V.I., Eds., Shaped Crystals: Growth by Micro-Pulling-Down Technique (Springer-Verlag, New York, 2007).CrossRefGoogle Scholar
6Chani, V.I., Yoshikawa, A., Kuwano, Y., Hasegawa, K., Fukuda, T., J. Cryst. Growth 204, 155 (1999).CrossRefGoogle Scholar
7Boulon, G., Collombet, A., Brenier, A., Cohen-Adad, M.-Th., Yoshikawa, A., Lebbou, K., Lee, J.H., Fukuda, T., Adv. Funct. Mater. 4, 264 (2001).Google Scholar
8Jouini, A., Sato, H., Yoshikawa, A., Fukuda, T., Boulon, G., Kato, K., Hanamura, E., J. Cryst. Growth 287, 313 (2006).CrossRefGoogle Scholar
9Lebbou, K., Yoshikawa, A., Fukuda, T., Cohen-Adad, M.Th., Brenier, A., Boulon, G., Ferriol, M., Mater. Res. Bull. 35, 1277 (2000).CrossRefGoogle Scholar
10Yoshikawa, A., Itagaki, H., Fukuda, T., Lebbou, K., El Hassouni, A., Brenier, A., Goutaudier, C., Tillement, O., Boulon, G., J. Cryst. Growth 247, 148 (2003).CrossRefGoogle Scholar
11Nikl, M., Ogino, H., Yoshikawa, A., Mihokova, E., Pejchal, J., Beitlerova, A., Novoselov, A., Fukuda, T., Chem. Phys. Lett. 410, 218 (2005).CrossRefGoogle Scholar
12Zhuravleva, M., Novoselov, A., Yoshikawa, A., Pejchal, J., Nikl, M., Fukuda, T., Opt. Mater. 30, 171 (2007).CrossRefGoogle Scholar
13Mun, J.H., Novoselov, A., Yoshikawa, A., Boulon, G., Fukuda, T., Mater. Res. Bull. 40, 1235 (2005).CrossRefGoogle Scholar
14Yoshikawa, A., Kim, K.J., Aoki, K., Kamada, K., Saito, F., Pejchal, J., Solovieva, N., Nikl, M., IEEE. Nucl. Trans. Sci. 55 (3), 1484 (2008).CrossRefGoogle Scholar
15Yoshikawa, A., Satonaga, T., Kamada, K., Sato, H., Nikl, M., Solovieva, N., Fukuda, T., J. Cryst. Growth 270, 427 (2004).CrossRefGoogle Scholar
16Gasson, D.B., J. Sci. Instrum. 42, 114 (1965).CrossRefGoogle Scholar
17Muto, K., Avazu, K., Jpn. J. Appl. Phys. 8, 1360 (1969).CrossRefGoogle Scholar
18Yu, Y.M., Chani, V.I., Shimamura, K., Fukuda, T., J. Cryst. Growth 171, 463 (1997).CrossRefGoogle Scholar
19Chani, V.I., Shimamura, K., Fukuda, T., Cryst. Res. Technol. 34, 519 (1999).3.0.CO;2-A>CrossRefGoogle Scholar
20Ganschow, S., Klimm, D., Epelbaum, B.M., Yoshikawa, A., Doerschel, J., Fukuda, T., J. Cryst. Growth 225, 454 (2001).CrossRefGoogle Scholar
21Epelbaum, B.M., Flux Growth of Miniature Bulk Crystals by the μ-PD Method, in Shaped Crystals: Growth by Micro-Pulling-Down Technique, Fukuda, T., Chani, V.I., Eds. (SpringerVerlag, New York, 2007), p. 93.CrossRefGoogle Scholar
22Chani, V.I., Lebbou, K., Hautefeuille, B., Tillement, O., Fourmigue, J.-M., Cryst. Res. Technol. 41 (10), 972 (2006).CrossRefGoogle Scholar