Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:44:12.610Z Has data issue: false hasContentIssue false

Growth of Binary Oxide Nanowires

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

One-dimensional (1D) semiconducting oxide nanostructures such as ZnO, SnO2, and In2O3 have been extensively studied due to their excellent optical and electrical properties. Growth of 1D nanostructures with precisely controlled size, phase purity, crystallinity, and chemical composition still presents numerous challenges. In this review, we report the recent progress on the synthesis of binary oxide nanostructures consisting of different oxides through a simple and effective vapor transport approach in our research. By controlling the experimental conditions, this approach enables the synthesis of various multicomponent binary oxide nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., and Yang, P.D., Science 292 (2001) p. 1897.CrossRefGoogle Scholar
2.Kolmakov, A., Zhang, Y.X., Cheng, G.S., and Moskovits, M., Adv. Mater. 15 (2003) p. 997.CrossRefGoogle Scholar
3.Li, C., Zhang, D.H., Han, S., Liu, X.L., Tang, T., and Zhou, C.W., Adv. Mater. 15 (2003) p. 143.CrossRefGoogle Scholar
4.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, Y.Q., Adv. Mater. 15 (2003) p. 353.CrossRefGoogle Scholar
5.Wu, Y.Y., Fan, R., and Yang, P.D., Nano Lett. 2 (2002) p. 83.CrossRefGoogle Scholar
6.Lao, J.Y., Wen, J.G., and Ren, Z.F., Nano Lett. 2 (2002) p. 1287.CrossRefGoogle Scholar
7.Gudiksen, M.S., Lauhon, L.J., Wang, J.F., Smith, D.C., and Lieber, C.M., Nature 415 (2002) p. 617.CrossRefGoogle Scholar
8.Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., and Xie, S.S., Solid State Commun. 130 (2004) p. 89.CrossRefGoogle Scholar
9.Liu, D.F., Xiang, Y.J., Zhang, Z.X., Wang, J.X., Gao, Y., Song, L., Liu, L.F., Dou, X.Y., Zhao, X.W., Luo, S.D., Wang, C.Y., Zhou, W.Y., Wang, G., and Xie, S.S., Nanotechnology 16 (2005) p. 2665.CrossRefGoogle Scholar
10.Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C.S., and Wang, Z.L., Science 309 (2005) p. 1700.CrossRefGoogle Scholar
11.Dai, Z.R., Gole, J.L., Stout, J.D., and Wang, Z.L., J. Phys. Chem. B 106 (2002) p. 1274.CrossRefGoogle Scholar
12.Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291 (2001) p. 1947.CrossRefGoogle Scholar
13.Wang, J.X., PhD thesis, Institute of Physics, Chinese Sciences Academy, Beijing (2005).Google Scholar
14.Wang, J.X., Xie, S.S., Gao, Y., Yan, X.Q., Liu, D.F., Yuan, H.J., Zhou, Z.P., Song, L., Liu, L.F., Zhou, W.Y., and Wang, G., J. Cryst. Growth 267 (2004) p. 177.CrossRefGoogle Scholar
15.Chen, H.Y., Wang, J.X., Yu, H.C., Yang, H.X., Xie, S.S., and Li, J.Q., J. Phys. Chem. B 109 (2005) p. 2573.CrossRefGoogle Scholar
16.Wang, J.X., Xie, S.S., Yuan, H.J., Yan, X.Q., Liu, D.F., Gao, Y., Zhou, Z.P., Song, L., Liu, L.F., Zhao, X.W., Dou, X.Y., Zhou, W.Y., and Wang, G., Solid State Commun. 131 (2004) p. 435.CrossRefGoogle Scholar
17.Kong, X.Y., Ding, Y., Yang, R.S., and Wang, Z.L., Science 303 (2004) p. 1348.CrossRefGoogle Scholar
18.Wang, J.X., Chen, H.Y., Gao, Y., Liu, D.F., Song, L., Zhang, Z.X., Zhao, X.W., Dou, X.Y., Luo, S.D., Zhou, W.Y., Wang, G., Li, J.Q., and Xie, S.S., J. Cryst. Growth 284 (2005) p. 73.CrossRefGoogle Scholar