Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:24:03.664Z Has data issue: false hasContentIssue false

Graphitic Nanoparticles

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Pure carbon materials, graphite and diamond, possess a wide array of interesting physical properties, and so attract a large spectra of interests and applications. Carbon microparticles (carbon black) and carbon fibers are widely used in practical applications including common materials (paints, inks, polymers, etc.) and high-performance composite materials.

Carbon displays a remarkably rich and complex chemical behavior (three different possible hybridizations: sp1, sp2, and sp3). In particular, the covalent carboncarbon bond is one of the strongest in nature, and induces a high melting temperature (> 4000°C). The phase changes associated with unusually high temperatures and pressures as revealed in the carbon phase diagram, and the fact that the solid sublimates at low pressures before melting, lead to many experimental difficulties in the study of high-temperature properties of carbon materials. Experiments must therefore rely on transient melting, for example, laser vaporization or arc-discharge heating. This explains why fullerenes and related graphitic structures have only recently been discovered.

From a fundamental point of view, the discovery of fullerenes has introduced new ideas about how carbon atoms bond. The curvature and closure of graphitic surfaces has become a standard concept in carbon chemistry, and recently a wide range of structures formed by curved graphitic networks has been observed. A surprising aspect of fullerene research is that these novel graphitic structures were found in well-known experiments, and that they had been overlooked for so many years.

This article will describe recent progress in the generation and physical characterization of graphitic nanoparticles, or multishell fullerenes. The lack of an efficient method for producing, as well as a method for purifying these particles makes it difficult to characterize them and to develop possible applications.

Type
Fullerenes
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bundy, F.P., Physica A 156 (1989) p. 169.CrossRefGoogle Scholar
2.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature (London) 318 (1985) p. 162.CrossRefGoogle Scholar
3.Krätschmer, W., Lamb, L.D., Foristopoulos, K., and Huffman, D.R., Nature (London) 347 (1990) p. 354.CrossRefGoogle Scholar
4.Yatsuya, S., Kaukabe, S., and Uyeda, R., Jpn. J. Appl. Phys. 12 (1973) p. 1675.CrossRefGoogle Scholar
5.Iijima, S., J. Cryst. Growth 50 (1980) p. 675.CrossRefGoogle Scholar
6.Iijima, S., 1987 91 (1986) p. 3466.Google Scholar
7.Iijima, S., J. Phys. Chem. 91 (1986) p. 3466.CrossRefGoogle Scholar
8.Iijima, S., Nature (London) 354 (1991) p. 56.CrossRefGoogle Scholar
9.Ugarte, D., Chem. Phys. Lett. 198 (1992) p. 596.CrossRefGoogle Scholar
10.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204 (1993) p. 277.CrossRefGoogle Scholar
11.Ebbesen, T.W. and Ajayan, P.M., Nature (London) 358 (1992) p. 220.CrossRefGoogle Scholar
12.Ruoff, R.S., Lorents, D.C., Chan, B., Malhotra, R., and Subramoney, S., Science 259 (1993) p. 346.CrossRefGoogle Scholar
13.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32 (1993) p. L280.CrossRefGoogle Scholar
14.Ugarte, D., Chem. Phys. Lett. 209 (1993) p. 99.CrossRefGoogle Scholar
15.Ugarte, D., Nature (London) 359 (1992) p. 707.CrossRefGoogle Scholar
16.Ugarte, D., Chem. Phys. Lett. 207 (1993) p. 473.CrossRefGoogle Scholar
17.Tsang, S.C., Harris, P.J.F., Claridge, J.B., and Green, M.L.H. (preprint).Google Scholar
18.Banhart, F., Philos. Mag. Lett. 69 (1994) p. 45.CrossRefGoogle Scholar
19.Ugarte, D., Europhys. Lett. 22 (1993) p. 45.CrossRefGoogle Scholar
20.Kroto, H.W., Nature (London) 359 (1992) p. 670.CrossRefGoogle Scholar
21.Lu, J.P. and Yang, W., Phys. Rev. B 49 (1994) p. 11421.CrossRefGoogle Scholar
22.McKay, K.G., Kroto, H.W., and Wales, D.J., J. Chem. Soc. Faraday Trans. 88 (1992) p. 2815.CrossRefGoogle Scholar
23.Yoshida, M. and Osawa, E., Fullerene Sci. Technol. 1 (1993) p. 55.CrossRefGoogle Scholar
24.Maiti, A., Brabec, C.J., and Bernholc, J., Phys. Rev. Lett. 70 (1993) p. 3023.CrossRefGoogle Scholar
25.York, D., Lu, J.P., and Yang, W., Modern Phys. Lett. B 49 (1994) p. 8526.Google Scholar
26.Maiti, A., Brabec, C.J., and Bernholc, J., Modern Phys. Rev. Lett. B 7 (1993) p. 1883.CrossRefGoogle Scholar
27.de Heer, W.A. and Ugarte, D., Chem. Phys. Lett. 207 (1993) p. 480.CrossRefGoogle Scholar
28.Kuznetsov, V.L., Chuvilin, A.L., Butenko, Y.V., Mal'kov, I.Y., and Titov, V.M., Chem. Phys. Lett. 222 (1994) p. 343.CrossRefGoogle Scholar
29.Greiner, N.R., Phillips, D.S., Johnson, J.D., and Volk, F., Nature (London) 332 (1988) p. 440.CrossRefGoogle Scholar
30.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature (London) 360 (1992) p. 444.CrossRefGoogle Scholar
31.Margulis, L., Salitra, G., Tenne, R., and Tallanker, M., Nature (London) 365 (1993) p. 113.CrossRefGoogle Scholar