Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T14:00:49.717Z Has data issue: false hasContentIssue false

A golden time for nanotechnology

Published online by Cambridge University Press:  07 May 2020

Huei-Huei Chang
Affiliation:
Department of Chemistry, University of Illinois at Urbana-Champaign, USA; [email protected]
Matthew T. Gole
Affiliation:
Department of Chemistry, University of Illinois at Urbana-Champaign, USA; [email protected]
Catherine J. Murphy
Affiliation:
Department of Chemistry, University of Illinois at Urbana-Champaign, USA; [email protected]
Get access

Abstract

Gold nanoparticles (AuNPs) are one of the most versatile and accessible classes of nanomaterials. Their chemical stability, ease of colloidal synthesis, surface functionalization, and plasmonic resonance—tunable from the visible through the near-infrared—have made AuNPs the metal nanoparticle of choice for many applications. This article summarizes the chemical synthesis of AuNPs, particularly gold nanorods, with a focus on recent developments in shape control and surface modifications. Current applications using the photothermal properties of AuNPs, as well as AuNP connections to biology and the environmental sciences, will be discussed.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on the MRS Medal presentation given by Catherine J. Murphy, University of Illinois at Urbana-Champaign, at the 2019 MRS Fall Meeting in Boston, Mass.

*

These authors contributed equally

References

Jana, N.R., Gearheart, L., Murphy, C.J., J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
Nikoobakht, B., El-Sayed, M.A., Chem. Mater. 15, 1957 (2003).CrossRefGoogle Scholar
Sau, T.K., Murphy, C.J., Langmuir 20, 6414 (2004).CrossRefGoogle Scholar
Vigderman, L., Zubarev, E.R., Chem. Mater. 25, 1450 (2013).CrossRefGoogle Scholar
Ye, X., Zheng, C., Chen, J., Gao, Y., Murray, C.B., Nano Lett. 13, 765 (2013).CrossRefGoogle Scholar
Chang, H.-H., Murphy, C.J., Chem. Mater. 30, 1427 (2018).CrossRefGoogle Scholar
Gole, A., Murphy, C.J., Chem. Mater. 17, 1325 (2005).CrossRefGoogle Scholar
Zhang, X.-D., Wu, D., Shen, X., Liu, P.-X., Yang, N., Zhao, B., Zhang, H., Sun, Y.-M., Zhang, L.-A., Fan, F.-Y., Int. J. Nanomed. 6, 2071 (2011).CrossRefGoogle Scholar
Abadeer, N.S., Brennan, M.R., Wilson, W.L., Murphy, C.J., ACS Nano 8, 8392 (2014).CrossRefGoogle Scholar
Hinman, J.G., Turner, J.G., Hofmann, D.M., Murphy, C.J., Chem. Mater. 30, 7255 (2018).CrossRefGoogle Scholar
Abadeer, N.S., Murphy, C.J., J. Phys. Chem. C 120, 4691 (2016).CrossRefGoogle Scholar
Cheng, X., Sun, R., Yin, L., Chai, Z., Shi, H., Gao, M., Adv. Mater. 29, 1604894 (2017).CrossRefGoogle Scholar
Chen, Y., Xianyu, Y., Jiang, X., Acc. Chem. Res. 50, 310 (2017).CrossRefGoogle Scholar
Al-Hassan, A.Y., Arab. Sci. Philos. 19, 121 (2009).CrossRefGoogle Scholar
Faraday, M., Philos. Trans. R. Soc. London 147, 145 (1857).Google Scholar
Turkevich, J., Stevenson, P.C., Hillier, J., Discuss. Faraday Soc. 11, 55 (1951).CrossRefGoogle Scholar
Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., J. Phys. Chem. B 110, 15700 (2006).CrossRefGoogle Scholar
Daruich De Souza, C., Ribeiro Nogueira, B., Rostelato, M.E.C.M., J. Alloys Compd. 798, 714 (2019).CrossRefGoogle Scholar
Park, J.-E., Lee, Y., Nam, J.-M., Nano Lett. 18, 6475 (2018).CrossRefGoogle Scholar
Sau, T.K., Murphy, C.J., J. Am. Chem. Soc. 126, 8648 (2004).CrossRefGoogle Scholar
Jana, N.R., Small 1, 875 (2005).CrossRefGoogle Scholar
Tong, W., Walsh, M.J., Mulvaney, P., Etheridge, J., Funston, A.M., J. Phys. Chem. C 121, 3549 (2017).CrossRefGoogle Scholar
Lohse, S.E., Murphy, C.J., Chem. Mater. 25, 1250 (2013).CrossRefGoogle Scholar
Kanter, H., Phys. Rev. B 1, 522 (1970).CrossRefGoogle Scholar
Hinman, J.G., Stork, A.J., Varnell, J.A., Gewirth, A.A., Murphy, C.J., Faraday Discuss. 191, 9 (2016).CrossRefGoogle Scholar
Ni, W., Kou, X., Yang, Z., Wang, J., ACS Nano 2, 677 (2008).CrossRefGoogle Scholar
Sivapalan, S.T., DeVetter, B.M., Yang, T.K., Schulmerich, M.V., Bhargava, R., Murphy, C.J., J. Phys. Chem. C 117, 10677 (2013).CrossRefGoogle Scholar
Osawa, M., Ataka, K.-I., Yoshii, K., Nishikawa, Y., Appl. Spectrosc. 47, 1497 (1993).CrossRefGoogle Scholar
Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A., J. Am. Chem. Soc. 128, 2115 (2006).CrossRefGoogle Scholar
Norman, R.S., Stone, J.W., Gole, A., Murphy, C.J., Sabo-Attwood, T.L., Nano Lett. 8, 302 (2008).CrossRefGoogle Scholar
Huang, J., Jackson, K.S., Murphy, C.J., Nano Lett. 12, 2982 (2012).CrossRefGoogle Scholar
Mahmoudi, M., Lohse, S.E., Murphy, C.J., Fathizadeh, A., Montazeri, A., Suslick, K.S., Nano Lett. 14, 6 (2014).CrossRefGoogle Scholar
Lin, W., Murphy, C.J., ACS Cent. Sci. 3 (10), 1096 (2017)CrossRefGoogle Scholar
Woehrle, G.H., Brown, L.O., Hutchison, J.E., J. Am. Chem. Soc. 127, 2172 (2005).CrossRefGoogle Scholar
Pelaz, B., del Pino, P., Maffre, P., Hartmann, R., Gallego, M., Rivera-Fernández, S., de la Fuente, J.M., Nienhaus, G.U., Parak, W.J., ACS Nano 9, 6996 (2015).CrossRefGoogle Scholar
Wu, M., Vartanian, A.M., Chong, G., Pandiakumar, A.K., Hamers, R.J., Hernandez, R., Murphy, C.J., J. Am. Chem. Soc. 141, 4316 (2019).CrossRefGoogle Scholar
Gorelikov, I., Matsuura, N., Nano Lett. 8, 369 (2008).CrossRefGoogle Scholar
Hinman, J.G., Eller, J.R., Lin, W., Li, J., Li, J., Murphy, C.J., J. Am. Chem. Soc. 139, 9851 (2017).CrossRefGoogle Scholar
Gao, Z., Burrows, N.D., Valley, N.A., Schatz, G.C., Murphy, C.J., Haynes, C.L., Analyst 141, 5088 (2016).CrossRefGoogle Scholar
Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Jérôme, C., Duguet, E., Small 11, 2323 (2015).CrossRefGoogle ScholarPubMed
Yu, S., Mohan, V., Jain, P.K., MRS Bull. 45, 43 (2020).CrossRefGoogle Scholar
Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett. 13, 240 (2013).CrossRefGoogle Scholar
Mubeen, S., Lee, J., Lee, W., Singh, N., Stucky, G.D., Moskovits, M., ACS Nano 8, 6066 (2014).CrossRefGoogle Scholar
Furube, A., Hashimoto, S., NPG Asia Mater. 9, e454 (2017).CrossRefGoogle Scholar
Link, S., El-Sayed, M.A., J. Phys. Chem. B 103, 8410 (1999).CrossRefGoogle Scholar
Link, S., El-Sayed, M.A., Int. Rev. Phys. Chem. 19, 409 (2000).CrossRefGoogle Scholar
Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X., Chen, C., Adv. Mater. 24, 1418 (2012).CrossRefGoogle Scholar
Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A., Chem. Soc. Rev. 41, 2740 (2012).CrossRefGoogle Scholar
Burrows, N.D., Lin, W., Hinman, J.G., Dennison, J.M., Vartanian, A.M., Abadeer, N.S., Grzincic, E.M., Jacob, L.M., Li, J., Murphy, C.J., Langmuir 32, 9905 (2016).CrossRefGoogle Scholar
Murphy, C.J., Chang, H.-H., Falagan-Lotsch, P., Gole, M.T., Hofmann, D.M., Hoang, K.N.L., McClain, S.M., Meyer, S.M., Turner, J.G., Unnikrishnan, M., Wu, M., Zhang, X., Zhang, Y., Acc. Chem. Res. 52, 2124 (2019).CrossRefGoogle Scholar
Yang, J.A., Phan, H.T., Vaidya, S., Murphy, C.J., Nano Lett. 13, 2295 (2013).CrossRefGoogle Scholar
Murphy, C.J., Gole, A.M., Hunyadi, S.E., Stone, J.W., Sisco, P.N., Alkilany, A., Kinard, B.E., Hankins, P., Chem. Commun. 5, 544 (2008).Google Scholar
Orendorff, C.J., Gole, A., Sau, T.K., Murphy, C.J., Anal. Chem. 77, 3261 (2005).CrossRefGoogle Scholar
Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L., Proc. Natl. Acad. Sci. U.S.A 100, 13549 (2003).CrossRefGoogle Scholar
Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., Li, Z.-Y., Zhang, H., Xia, Y., Li, X., Nano Lett. 7, 1318 (2007).CrossRefGoogle Scholar
Sibuyi, N.R.S., Moabelo, K.L., Meyer, M., Onani, M.O., Dube, A., Madiehe, A.M., J. Nanobiotechnol. 17, 122 (2019).CrossRefGoogle Scholar
Wentao, W., Tao, Z., Bulei, S., Tongchang, Z., Qicheng, Z., Fan, W., Ninglin, Z., Jian, S., Ming, Z., Yi, S., Appl. Mater. Today 17, 36 (2019).CrossRefGoogle Scholar
Yu, Y., Wu, Y., Liu, J., Li, K., Wu, D., J. Mater. Chem. B 4, 1090 (2016).CrossRefGoogle Scholar
Gioria, S., Vicente, J.L., Barboro, P., Spina, R.L., Tomasi, G., Urbán, P., Kinsner-Ovaskainen, A., François, R., Chassaigne, H., Nanotoxicology 10, 736 (2016).CrossRefGoogle Scholar
Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W., Nat. Rev. Mater. 1, 16014 (2016).CrossRefGoogle Scholar
Grzincic, E.M., Yang, J.A., Drnevich, J., Falagan-Lotsch, P., Murphy, C.J., Nanoscale 7, 1349 (2015).CrossRefGoogle Scholar
Falagan-Lotsch, P., Grzincic, E.M., Murphy, C.J., Proc. Natl. Acad. Sci. U.S.A 113, 13318 (2016).CrossRefGoogle Scholar
Ferry, J.L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P.L., Fulton, M.H., Scott, I.G., Decho, A.W., Kashiwada, S., Murphy, C.J., Shaw, T.J., Nat. Nanotechnol. 4, 441 (2009).CrossRefGoogle Scholar
Burns, J.M., Pennington, P.L., Sisco, P.N., Frey, R., Kashiwada, S., Fulton, M.H., Scott, G.I., Decho, A.W., Murphy, C.J., Shaw, T.J., Ferry, J.L., Environ. Sci. Technol. 47, 12844 (2013).CrossRefGoogle Scholar
Lohse, S.E., Abadeer, N.S., Zoloty, M., White, J.C., Newman, L.A., Murphy, C.J., ACS Sustain. Chem. Eng. 5, 11451 (2017).CrossRefGoogle Scholar
Metch, J.W., Burrows, N.D., Murphy, C.J., Pruden, A., Vikesland, P.J., Nat. Nanotechnol. 13, 253 (2018).CrossRefGoogle Scholar
Wang, P., Nasir, M.E., Krasavin, A.V., Dickson, W., Jiang, Y., Zayats, A.V., Acc. Chem. Res. 52, 3018 (2019).CrossRefGoogle Scholar
Zijlstra, P., Chon, J.W.M., Gu, M., Nature 459, 410 (2009).CrossRefGoogle Scholar