Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T13:49:20.050Z Has data issue: false hasContentIssue false

Glass-Formers and Viscous Liquid Slowdown since David Turnbull: Enduring Puzzles and New Twists

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

To Turnbull's study of the kinetic problem of nucleation and growth of crystals, we add the further enquiry into what lies behind the slow nucleation kinetics of glass-formers. Our answer to this question leads to the proposal of conditions in which a pure liquid metal, monatomic and elemental, can be vitrified. Using the case of high-pressure liquid germanium, we give electron microscope evidence for the validity of our thinking.

On the question of how liquids behave when crystals do not form, Turnbull pioneered the study of glass transitions in metallic alloys, measuring the heat capacity change at the glass transition Tg for the first time, and developing with Cohen the free volume model for the temperature dependence of liquid transport properties approaching Tg. We extend the phenomenological picture to include networks where free volume does not play a role and reveal a pattern of behavior that provides for a classification of glass-formers (from “strong” to “fragile”). Where Turnbull studied supercooled liquid metals and P4 to the homogeneous nucleation limit using small droplets, we studied supercooled water in capillaries and emulsions to the homogeneous nucleation limit near −40°C. We discuss the puzzling divergences observed that are now seen as part of a cooperative transition that leads to very untypical glass-transition behavior at lower temperatures (when crystallization is bypassed by hyperquenching). Finally, we show how our interpretation of water behavior can be seen as a bridge between the behavior of the “strong” (network) liquids of classical glass science (e.g., SiO2) and the “fragile” behavior of typical molecular glass-formers. The link is made using a “Gaussian excitations” model by Matyushov and the author in which the spike in heat capacity for water is pushed by cooperativity (disorder stabilization of excitations) into a first-order transition to the ground state, at a temperature typically below Tg. In exceptional cases like triphenyl phosphite, this liquid-to-glass first-order transition lies above Tg and can be studied in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, P.W., Science 267, 1615 (1995).CrossRefGoogle Scholar
2.Poole, P.H., Grande, T., Angell, C.A., McMillan, P.F., Science 275, 322 (1997).Google Scholar
3.Goldstein, M., J. Chem. Phys. 51, 3728 (1969).Google Scholar
4.Stillinger, F.H., Science 267, 1935 (1995).CrossRefGoogle Scholar
5.Stillinger, F.H., Weber, T.A., Science 228, 983 (1984).CrossRefGoogle Scholar
6.Speedy, R.J., Mol. Phys. 95, 169 (1998).Google Scholar
7.Onoda, G.Y., Linegar, E.G., Phys. Rev. Lett. 64, 2727 (1990).CrossRefGoogle Scholar
8.Aptekar, L.I., Sov. Phys. Dokl. 24, 993 (1979).Google Scholar
9.Spaepen, F., Turnbull, D., AIP Conf. Proc., Ferris, S.D., Leamy, H.J., Poate, J.M., Eds. (American Institute of Physics, New York, 1978) p. 73.Google Scholar
10.Bagley, B.G., Chen, H.S., Mol. Phys. 97 (1978).Google Scholar
11.Aasland, S., McMillan, P.F., Nature 369, 633 (1994).CrossRefGoogle Scholar
12.Hillig, W.B., Turnbull, D., J. Chem. Phys. 24, 914 (1956).Google Scholar
13.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
14.Debenedetti, P.G., Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, N.J., 1996).Google Scholar
15.Brawer, S., Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, OH, 1985).Google Scholar
16.Senapati, H., Kadiyala, K.K., Angell, C.A., J. Phys. Chem. 95, 7050 (1991).Google Scholar
17.Uhlmann, D.R., J. Non-Cryst. Solids 7, 337 (1972).CrossRefGoogle Scholar
18.Molinero, V., Sastry, S., Angell, C.A., Phys. Rev. Lett. 97 (2006).CrossRefGoogle Scholar
19.Angell, C.A., Nature 393, 521 (1998).CrossRefGoogle Scholar
20.Lynden-Bell, R., Debenedetti, P.G., J. Phys. Chem. B 109, 6527 (2005).CrossRefGoogle Scholar
21.Bordat, P., Affouard, F., Descamps, M., Ngai, K.-L., Phys. Rev. Lett. 93, 105502 (2004), J. Non-Cryst. Sol. 353, 41–43 (2007).CrossRefGoogle Scholar
22.Stillinger, F.H., Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
23.Chathoth, S.M., Meyer, A., Koza, M.M., Juranyi, F., Appl. Phys. Lett. 85, 4881 (2004).Google Scholar
24.Wong, J., Angell, C.A., Glass: Structure by Spectroscopy (Marcel Dekker, New York, 1976).Google Scholar
25.Angell, C.A., Green, J.L., Lyophilization of Biopharmaceuticals, Constantino, M.P.A.R., Ed. (AAPS Press, 2005) p. 367.Google Scholar
26.Alba, C., Busse, L.E., List, D.J., Angell, C.A., J. Chem. Phys. 92, 617 (1990).Google Scholar
27.Angell, C.A., Borick, S., Grabow, M., J. Non-Cryst. Solids 205–207, 463 (1996).CrossRefGoogle Scholar
28.Molinero, V., Sastry, S., Angell, C.A., unpublished work.Google Scholar
29.Molinero, V., unpublished work.Google Scholar
30.Li, D., Herbach, D.M., J. Mater. Sci. 32, 14371442 (1997).Google Scholar
31.Bhat, H., Molinero, V., Solomon, V., Soignard, E., Sastry, S., Yarger, J.L., Angell, C.A., Nature 448, 787 (2007).Google Scholar
32.Sastry, S., Angell, C.A., Nature Mater. 2, 739 (2003).Google Scholar
33.Matsumoto, M., Saito, S., Ohmine, I., Nature 416, 409 (2002).CrossRefGoogle Scholar
34.Kapko, V., Matyushov, D., and Angell, C.A. are currently demonstrating the generation of a phase diagram with features close to those of Figure 6, obtained for a system in which a Lennard–Jones sphere is systematically distorted to create a rod-like atom. A wide region about the eutectic is a computer glass-former, with interesting liquid-state properties.Google Scholar
35.Kapko, V., Matyushov, D., Angell, C.A., Abs. Phys. Soc. (Spring meeting, 2007) abs. L27–3.Google Scholar
36.Busch, R., JOM 52, 39 (2000).Google Scholar
37.Derrida, B., Phys. Rev. B 24, 2613 (1981).CrossRefGoogle Scholar
38.Kauzmann, W., Chem. Rev. 43, 218 (1948).Google Scholar
39.Gibbs, J.H., Dimarzio, E.A., J. Chem. Phys. 28, 373 (1958).CrossRefGoogle Scholar
40.Scherer, G.W., “Editorial comments on a paper by G.S. Fulcher,” J. Amer. Ceram. Soc. 75, 1060 (1992).Google Scholar
41.Angell, C.A., J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997).Google Scholar
42.Dimarzio, E.A., Gibbs, J.H., J. Chem. Phys. 28, 807 (1958).Google Scholar
43.Cohen, M.H., Turnbull, D., J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
44.Cohen, M.H., Grest, G.S., Ann. N.Y. Acad. Sci. 371, 199 (1981).CrossRefGoogle Scholar
45.Granato, A.V., Phys. Rev. Lett. 68, 974 (1992).CrossRefGoogle Scholar
46.Matyushov, D., Angell, C.A., J. Chem. Phys. 126, AN 094501 (2007).Google Scholar
47.Matyushov, D.V., Angell, C.A., J. Chem. Phys. 123 (2005).Google Scholar
48.Böhmer, R., Angell, C.A., Disorder Effects on Relaxation Processes, Richert, R., Blumen, A., Eds. (Springer, Berlin, 1994) p. 11.Google Scholar
49.Cicerone, M.T., Ediger, M.D., J. Chem. Phys. 103, 5684 (1995).Google Scholar
50.Schiener, B., Bohmer, R., Loidl, A., Chamberlin, R.V., Science 274, 752 (1996).CrossRefGoogle Scholar
51.Donati, C., Douglas, J. F., Kob, W., Poole, P. H., Plimpton, S. J., Glotzer, S.C., Phys. Rev. Lett. 80, 2338 (1998).CrossRefGoogle Scholar
52.Ediger, M.D., Rev. Ann. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
53.Richert, R., J. Phys. Condens. Matter 14, R703 (2002).Google Scholar
54.Garrahan, J.P., Chandler, D., Proc. Natl. Acad. Sci. USA 100, 9710 (2003).Google Scholar
55.Hurley, M.M., Harrowell, P., Phys. Rev. E 52, 1694 (1995).CrossRefGoogle Scholar
56.Hemmati, M., Moynihan, C.T., Angell, C.A., J. Chem. Phys. 115, 6663 (2001).Google Scholar
57.Martinez, L.M., Angell, C.A., Nature 410, 663 (2001).CrossRefGoogle Scholar
58.Ngai, K.L., Yamamuro, O., J. Chem. Phys. 111, 10403 (1999).Google Scholar
59.Moynihan, C.T., Angell, C.A., J. Non-Cryst. Solids 274, 131 (2000).CrossRefGoogle Scholar
60.Angell, C.A., Rao, K.J., J. Chem. Phys. 57, 470 (1972).Google Scholar
61.Perez, J., Polymer 29, 483 (1988).Google Scholar
62.Garrahan, J.P., Chandler, D., Proc. Natl. Acad. Sci. USA 100, 9710 (2003).Google Scholar
63.Hush, N.S., Discuss. Faraday Soc. 52 (1968).Google Scholar
64.Matyushov, D.V., J. Chem. Phys. 120, 7532 (2004).CrossRefGoogle Scholar
65.Dyre, J., Rev. Mod. Phys. 78, 953 (2006).Google Scholar
66.Granato, A.V., Khonik, V.A., Phys. Rev. Lett. 93 (2004).Google Scholar
67.Angell, C.A., Chem. Rev. 102, 2627 (2002).CrossRefGoogle Scholar
68.Debenedetti, P.G., Rev. J. Phys. Condens. Matter 45, R1669 (2003).CrossRefGoogle Scholar
69.Oguni, M., Angell, C.A., J. Chem. Phys. 73, 1948 (1980).CrossRefGoogle Scholar
70.Speedy, R.J., Angell, C.A., J. Chem. Phys. 65, 851 (1976).CrossRefGoogle Scholar
71.Angell, C.A., Science 319, 582 (2008).CrossRefGoogle Scholar
72.Starr, F., Angell, C.A., Stanley, H.E., Physica A 3223, 51 (2003).Google Scholar
73.Maruyama, S., Wakabayashi, K., Oguni, M.A., AIP Conf. Proc. 708, 675 (2004).Google Scholar
74.Starr, F.W., Sastry, S., La Nave, E., Scala, A., Stanley, H.E., Sciortino, F., Phys. Rev. E, 6304 (2001).Google Scholar
75.Poole, P.H., Sciortino, F., Essmann, U., Stanley, H.E., Nature 360, 324 (1992).Google Scholar
76.Angell, C.A., Borick, S., Grabow, M., J. Non-Cryst. Solids 207, 463 (1996).CrossRefGoogle Scholar
77.Speedy, R.J., J. Phys. Chem. 86, 982 (1982).Google Scholar
78.Tamura, S., Yokokawa, T., Niwa, K.J., J. Chem. Thermodyn. 7, 633 (1975).CrossRefGoogle Scholar
79.Angell, C.A., J. Non-Cryst. Solids (2008) in press.Google Scholar
80.Angell, C.A., Bressel, R.D., Hemmati, M., Sare, E.I., Tucker, J.C., Phys. Chem. Chem. Phys. 2, 1559 (2000).Google Scholar
81.Scheidler, P., Kob, W., Latz, A., Horbach, J., Binder, K., Phys. Rev. B 63, 104204 (2005).Google Scholar
82.Johari, G.P., Hallbrucker, A., Mayer, E., Nature 330, 552 (1987).CrossRefGoogle Scholar
83.Kohl, I., Bachmann, L., Mayer, E., Hallbrucker, A., Loerting, T., Nature 435, E1 (2005).Google Scholar
84.Velikov, V., Borick, S., Angell, C.A., Science 294, 2335 (2001).CrossRefGoogle Scholar
85.Yue, Y.Z., Angell, C.A., Nature 427, 717 (2004).CrossRefGoogle Scholar
86.McLure, S.M., Satarik, D.J., Truskett, T.M., Mullins, C.B., J. Phys. Chem. 110, 11033 (2006).CrossRefGoogle Scholar
87.Minoguchi, A., Richert, R., Angell, C.A., Phys. Rev. Lett. 93, 215703 (2004).Google Scholar
88.Souda, R., Chem. Phys. Lett. (2005).Google Scholar
89.Souda, R., J. Phys. Chem. B 110, 17524 (2006).CrossRefGoogle Scholar
90.Angell, C.A., Williams, E., Rao, K.J., Tucker, J.C., J. Phys. Chem. 81, 238 (1977).Google Scholar
91.Grimsditch, M., Rivier, N., Appl. Phys. Lett. 58, 2345 (1991).Google Scholar
92.Wilson, M. and Madden, P.A., Phys. Rev. Lett. 80, 532 (1998).Google Scholar
93. A Widom line is defined by Stanley and co-workers [see Xu, L.-M., Kumar, P., Buldyrev, S.V., Stanley, H.E., Proc. Natl. Acad. Sci. USA 102, 16588 (2005)] to be the extension of a line of first-order liquid–liquid transition temperatures beyond the critical point which terminates the coexistence line.Google Scholar
94.Xu, L.-M., Kumar, P., Buldyrev, S.V., Stanley, H.E., Proc. Nat. Acad. Sci. 102, 16588 (2005).Google Scholar
95.Angell, C.A., Nature Nano 2, 14, (2007).Google Scholar
96.Schneider, J., Mastelaro, V.R., Panepucci, H., Zanotto, E.D., J. Non-Cryst. Solids 273, 8 (2000).Google Scholar
97.Kanno, H., Yokoyama, H., Yoshimura, Y., J. Phys. Chem. B 105, 2019 (2001).Google Scholar
98.Mishima, O., J. Chem. Phys., 123 (2005).Google Scholar
99.Angell, C.A., Sare, E.I., J. Chem. Phys. 52, 1058 (1970).CrossRefGoogle Scholar
100.Oguni, M., Angell, C.A., J. Chem. Phys. 78, 7334 (1983).CrossRefGoogle Scholar
101.Tajima, Y., Matsuo, T., Suga, H., Nature 299, 810 (1982).Google Scholar
102.Voronin, G.A., Pantea, C., Zerda, T.W., Zhang, J., Wang, L., Zhao, Y., J. Phys. Chem. Solids 64, 2113 (2003).Google Scholar
103.Aasland, S., McMillan, P.F., Nature 369, 633 (1994).CrossRefGoogle Scholar
104.Kurita, R., Tanaka, H., Science 306, 845 (2004).CrossRefGoogle Scholar
105.Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W., J. Appl. Phys. 88, 3113 (2000).CrossRefGoogle Scholar
106.Smith, D.L., Angell, C.A., J. Chem. Phys. 86, 3845 (1982).Google Scholar
107.Stickel, F., Fischer, E.W., Richert, R., J. Chem. Phys. 102, 6251 (1995).Google Scholar
108. Users of this form should be aware that it greatly overemphasizes the early couple of orders of magnitude of frequency decrease; hence, unless this is taken into account, it gives a portrayal of liquid behavior that is not a good guide to what is happening near T g. The analysis of the heat capacity using the form S ex = C p log(T/T m) does the opposite.Google Scholar