Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-20T18:02:26.142Z Has data issue: false hasContentIssue false

Gel Sensors and Actuators

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Gels, soft polymeric or composite materials that have a high fraction of water, are often found as structural materials and actuators in nature but have so far not found many uses when fabricated synthetically. We first examine some natural systems such as jellyfish, sea anemones, starfish, legumes, and human tissue, all having interesting ways of moving or otherwise reacting to the surrounding environment. Then we discuss swelling and cross-linking of hydrogels, followed by a look at actuation by electrically, thermally, and chemically stimulated gels, noting that electrical stimulation needs a chemical intermediary to show substantial actuation (comparable to human muscle, for instance). Electroactive gels have great potential as sensors and actuators but their actual uses are mainly restricted to passive drug delivery and matrices for sensors. For most applications as artificial muscles, electrically driven actuators are too weak, but chemically driven actuators look very promising. Better ways of coupling electrical energy to chemically driven gels are needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Katchalsky, A., Zwick, M., J. Polymer Sci. 16, 221 (1955).CrossRefGoogle Scholar
2.Kuhn, W., Hargitay, B., Katchalsky, A., Eisenberg, H., Nature 165, 514 (1955).CrossRefGoogle Scholar
3.Megill, W.M., Gosline, J.M., Blake, R.W., J. Exp. Biol. 208, 3819 (2005).CrossRefGoogle Scholar
4.Gosline, J., J. Exp. Biol. 55, 763 (1971).CrossRefGoogle Scholar
5.Gosline, J., J. Exp. Biol. 55, 775 (1971).CrossRefGoogle Scholar
6.Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M.. Mechanical Design in Organisms (Princeton University Press, Princeton, N.J., 1986).Google Scholar
7.Koob, T.J., Koob-Emunds, M.M., Trotter, J.A., J. Exp. Biol. 202, 2291 (1999).CrossRefGoogle Scholar
8.Knoblauch, M., Noll, G.A., Müller, T., Prüfer, D., Schneider-Hüther, I., Scharner, D., Bel, A.J.E.V., Peters, W.S., Nat. Mater. 2, 600 (2003).CrossRefGoogle Scholar
9.Pickard, W., Knoblauch, M., Peters, W., Shen, A., Mater. Sci. Eng. C 26, 104 (2006).CrossRefGoogle Scholar
10.Shen, A., Hamlington, B., Knoblauch, M., Peters, W., Pickard, W., Smart Struct. Syst. 2, 225 (2006).CrossRefGoogle Scholar
11.Pollack, G.H., Blyakhman, F.A., Reitz, F.B., Yakovenko, O.V., Dunaway, D.L., Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Ed., Bar-Cohen, Y., Ed. (SPIE Press, 2004) p. 53.Google Scholar
12.Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y., Adv. Mater. 15, 1155 (2003).CrossRefGoogle Scholar
13.Na, Y.-H., Tanaka, Y., Kawauchi, Y., Furukawa, H., Sumiyoshi, T., Gong, J.P., Osada, Y., Macromolecules 39, 4641 (2006).CrossRefGoogle Scholar
14.Karasz, F., Macknight, W., Adv. Chem. Ser. 211, 67 (1986).CrossRefGoogle Scholar
15.Fried, J., Polymer Science and Technology, 2nd Ed. (Upper Saddle River, NJ, Prentice Hall, 2003).Google Scholar
16.Calvert, P., Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd Ed., Bar-Cohen, Y., Ed., (SPIE Press, 2004) p. 123.Google Scholar
17.Doi, M., Matsumoto, M., Hirose, Y., Macromolecules 25, 5504 (1992).CrossRefGoogle Scholar
18.Shiga, T., Adv. Polymer Sci. 134, 131 (1997).CrossRefGoogle Scholar
19.Osada, Y., Okuzaki, H., Hori, H., Nature 355, 242 (1992).CrossRefGoogle Scholar
20.Kaneko, D., Gong, J.P., Osada, Y., J. Mater. Chem. 12, 2169 (2002).CrossRefGoogle Scholar
21.Shiga, T., Hirose, Y., Okada, A., Kurauchi, T., J. Appl. Polym. Sci. 47, 113 (1993).CrossRefGoogle Scholar
22.Liu, Z., Calvert, P., Adv. Mater. 12, 288 (2000).3.0.CO;2-1>CrossRefGoogle Scholar
23.Liang, S., Xu, J., Weng, L., Zhang, L., Guo, X., Zhang, X., J. Polym. Sci., Part B: Polym. Phys. 45, 1187 (2007).CrossRefGoogle Scholar
24.Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H., Nature 404, 588 (2000).CrossRefGoogle Scholar
25.Dong, L., Agarwal, A.K., Beebe, D.J., Jiang, H., Nature 443, 551 (2006).CrossRefGoogle Scholar
26.Tsutsui, H., Mikami, M., Akashi, R., Adv. Mater. 16, 1925 (2004).CrossRefGoogle Scholar
27.Schreyer, H., Gebhart, N., Kim, K., Shahinpoor, M., Biomacromolecules 1, 642 (2000).CrossRefGoogle Scholar
28.Umemoto, S., Okui, N., Sakai, T., Polymer Gels, DeRossi, D., Kajiwara, K., Osada, Y., Yamauchi, A., Eds. (Plenum, NY, 1991) p. 257.CrossRefGoogle Scholar
29.Choe, K., Kim, K.J., Sens. Actuators A 126, 165 (2006).CrossRefGoogle Scholar
30.Lee, D.Y., Kim, Y., Lee, S.-J., Lee, M.-H., Lee, J.-Y., Kim, B.-Y., Cho, N.-I., Mater. Sci. Eng. C 28, 294 (2008).CrossRefGoogle Scholar
31.Yoshida, R., Takahashi, T., Yamaguchi, T., Ichijo, H., J. Am. Chem. Soc. 118, 5134 (1996).CrossRefGoogle Scholar
32.Yashin, V. V., Balazs, A.C., J. Chem. Phys. 126, 124707 (2007).CrossRefGoogle Scholar
33.Topham, P.D., Howse, J.R., Crook, C.J., Armes, S.P., Jones, R.A.L., Ryan, A.J., Macromolecules 40, 4393 (2007).CrossRefGoogle Scholar
34.Howse, J.R., Topham, P., Crook, C.J., Gleeson, A.J., Bras, W., Jones, R.A.L., Ryan, A.J., Nano Lett. 6, 73 (2006).CrossRefGoogle Scholar
35.Filipcsei, G., Csetneki, I., Szilagyi, A., Zrinyi, M., Adv. Polym. Sci. 206, 137 (2007).CrossRefGoogle Scholar
36.Bellan, C., Bossis, G., Int. J. Mod. Phys. B 16, 2447 (2002).CrossRefGoogle Scholar
37.Ginder, J.M., Clark, S.M., Schlotter, W.F., Nichols, M.E., Int. J. Mod. Phys. B 16, 2412 (2002).CrossRefGoogle Scholar
38.An, Y., Liu, B., Shaw, M.T., Int. J. Mod. Phys. B 16, 2440 (2002).CrossRefGoogle Scholar
39.Mitsumata, T., Sakai, K., Takimoto, J.-I., J. Phys. Chem. B 110, 20217 (2006).CrossRefGoogle Scholar
40.Bassetti, M., Chatterjee, A., Aluru, N., Beebe, D., J. Microelectromech. Syst. 14, 1198 (2005).CrossRefGoogle Scholar
41.Johnson, B.D., Beebe, D.J., Crone, W.C., Mater. Sci. Eng. C 24, 575 (2004).CrossRefGoogle Scholar
42.Kim, D., Beebe, D., Lab Chip 7, 193 (2007).CrossRefGoogle Scholar
43.Sershen, S., Mensing, G., Ng, M., Halas, N., Beebe, D., West, J., Adv. Mater. 17, 1366 (2005).CrossRefGoogle Scholar
44.Harmon, M.E., Tang, M., Frank, C.W., Polymer 44, 4547 (2003).CrossRefGoogle Scholar
45.Richter, A., Kuckling, D., Howitz, S., Gehring, T., Arndt, K.-F., J. Microelectromech. Syst. 12, 748 (2003).CrossRefGoogle Scholar
46.Tsutsui, H., Akashi, R., J. Appl. Polym. Sci. 102, 362 (2006).CrossRefGoogle Scholar
47.Tsutsui, H., Akashi, R., J. Polym. Sci., Part A: Polym. Chem. 44, 4644 (2006).CrossRefGoogle Scholar
48.Lin, C.-C., Metters, A.T., Adv. Drug Deliv. Rev. 58, 1379 (2006).CrossRefGoogle Scholar
49.Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H., Eur. J. Pharm. Biopharm. 50, 27 (2000).CrossRefGoogle Scholar
50.Kavanagh, C.A., Rochev, Y.A., Gallagher, W.M., Dawson, K.A., Keenan, A.K., Pharmacol. Ther. 102, 1 (2004).CrossRefGoogle Scholar
51.Mueller, A., Mini-Rev. Med. Chem. 5, 231 (2005).CrossRefGoogle Scholar
52.Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Adv. Mater. 18, 1345 (2006).CrossRefGoogle Scholar
53.Lavine, B., Kaval, N., Westover, D., Oxenford, L., Anal. Lett. 39, 1773 (2006).CrossRefGoogle Scholar
54.Gerlach, G., Guenther, M., Sorber, J., Suchaneck, G., Arndt, K.-F., Richter, A., Sens. Actuators B 111–112, 555 (2005).CrossRefGoogle Scholar
55.Ambade, A.V., Sandanaraj, B.S., Klaikherd, A., Thayumanavan, S., Polym. Int. 56, 474 (2007).CrossRefGoogle Scholar
56.Holtz, J., Asher, S., Nature 389, 829 (1997).CrossRefGoogle Scholar
57.Holtz, J.H., Holtz, J.S.W., Munro, C.H., Asher, S.A., Anal. Chem. 70, 780 (1998).CrossRefGoogle Scholar
58.Marshall, A.J., Young, D.S., Kabilan, S., Hussain, A., Blyth, J., Lowe, C.R., Anal. Chim. Acta 527, 13 (2004).CrossRefGoogle Scholar
59.Kabilan, S., Marshall, A.J., Sartain, F.K., Lee, M.-C., Hussain, A., Yang, X., Blyth, J., Karangu, N., James, K., Zeng, J., Smith, D., Domschke, A., Lowe, C.R., Biosens. Bioelectron. 20, 1602 (2005).CrossRefGoogle Scholar
60.Linden, H.J.V.D., Herber, S., Olthuis, W., Bergveld, P., Analyst 128, 325 (2003).CrossRefGoogle Scholar
61.Arnold, F.H., Zheng, W., Michaels, A.S., J. Membr. Sci. 167, 227 (2000).CrossRefGoogle Scholar
62.Kikuchi, A., Suzuki, K., Okabayashi, O., Hoshino, H., Kataoka, K., Sakurai, Y., Okano, T., Anal. Chem. 68, 823 (1996).CrossRefGoogle Scholar
63.Li, C., Dong, H., Cao, X., Luong, J., Zhang, X., Curr. Med. Chem. 14, 937 (2007).Google Scholar
64.Grimstone, A.V., Horne, R.W., Pantin, C.F.A., and Robson, E.A., Quart. J. Microsc. Sci. 99 (Part 4), 523 (December 1958).Google Scholar
65.Choe, K., Kwang, J.K., Sens. Actuators A 126, 165 (2006).CrossRefGoogle Scholar
66.Gemeinhart, R.A., Chen, J., Park, H., Park, K., J. Biomater. Sci. Polym. Ed. 11, 1371 (2000).CrossRefGoogle Scholar