Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-20T18:05:50.326Z Has data issue: false hasContentIssue false

Gate Oxides Beyond SiO2

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This year marks a major materials milestone in the makeup of silicon-based field-effect transistors: in the microprocessors produced by leading manufacturers, the SiO2 gate dielectric is being replaced by a hafnium-based dielectric. The incredible electronic properties of the SiO2/silicon interface are the reason that silicon has dominated the semiconductor industry and helped it grow to over $250 billion in annual sales, as reported by the Semiconductor Industry Association (SIA), San Jose, CA. The shrinkage of transistor dimensions (Moore's law) has led to tremendous improvements in circuit speed and computer performance. At the same time, however, it has also led to exponential growth in the static power consumption of transistors due to quantum mechanical tunneling through an ever-thinner SiO2 gate dielectric. This has spurred an intensive effort to find an alternative to SiO2 with a higher dielectric constant (K) to temper this exploding power consumption. This article reviews the high-K materials revolution that is enabling Moore's law to continue beyond SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lilienfeld, J.E., U.S. Patent 1,900,018 (March 7, 1933).Google Scholar
2.Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRefGoogle Scholar
3.Kahng, D., U.S. Patent 3,102,230 (August 27, 1963).CrossRefGoogle Scholar
4.The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 1997), pp. 5960, 70–72.Google Scholar
5.Moore, G.E., Electronics 38, 114 (1965).Google Scholar
6.Moore, G.E., in IEDM Technical Digest 1975 (IEEE, Piscataway, NJ, 1975), pp. 1113.Google Scholar
7.Moore, G.E., in ISSCC Digest of Technical Papers 2003 (IEEE, Piscataway, NJ, 2003), pp. 2023.Google Scholar
8.Kingon, A.I., Maria, J.-P., Streiffer, S.K., Nature 406, 1032 (2000).CrossRefGoogle Scholar
9.Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
10.Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., Timp, G., Nature 399, 758 (1999).CrossRefGoogle Scholar
11.Zaima, S., Furuta, T., Yasuda, Y., Iida, M., J. Electrochem. Soc. 137, 1297 (1990).CrossRefGoogle Scholar
12.Alers, G.B., Werder, D.J., Chabal, Y., Lu, H.C., Gusev, E.P., Garfunkel, E., Gustafsson, T., Urdahl, R.S., Appl. Phys. Lett. 73, 1517 (1998).CrossRefGoogle Scholar
13.Mao, A.Y., Son, K.A., White, J.M., Kwong, D.L., Roberts, D.A., Vrtis, R.N., J. Vac. Sci. Technol. A 17, 954 (1999).CrossRefGoogle Scholar
14.Gilmer, D.C., Colombo, D.G., Taylor, C.J., Roberts, J., Haugstad, G., Campbell, S.A., Kim, H.-S., Wilk, G.D., Gribelyuk, M.A., Gladfelter, W.L., Chem. Vap. Deposition 4, 9 (1998).3.0.CO;2-3>CrossRefGoogle Scholar
15.Pennebaker, W.B., IBM J. Res. Dev. 13, 686 (1969).CrossRefGoogle Scholar
16.Panitz, J.K.G., Hu, C.C., J. Vac. Sci. Technol. 16 315 (1979).CrossRefGoogle Scholar
17.Dharmadhikari, V.S., Grannemann, W.W., J. Vac. Sci. Technol. A 1, 483 (1983).CrossRefGoogle Scholar
18.Matsubara, S., Sakuma, T., Yamamichi, S., Yamaguchi, H., Miyasaka, Y., in Mater. Res. Soc. Symp. Proc. 200, Myers, E.R., Kingon, A.I., Eds. (Materials Research Society, Warrendale, PA, 1990), pp. 243253.Google Scholar
19.Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., Miyasaka, Y., Appl. Phys. Lett. 57, 2431 (1990).CrossRefGoogle Scholar
20.Yamaguchi, H., Matsubara, S., Miyasaka, Y., Jpn. J. Appl. Phys. 30, 2197 (1991).CrossRefGoogle Scholar
21.Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., Koinuma, H., Jpn. J. Appl. Phys., Part 2 30, L1136 (1991).CrossRefGoogle Scholar
22.Schlom, D.G., Billman, C.A., Haeni, J.H., Lettieri, J., Tan, P.H., Held, R.R.M., Völk, S., Hubbard, K.J., in Thin Films and Heterostructures for Oxide Electronics, Ogale, S.B., Ed. (Springer, New York, 2005), pp. 3178.CrossRefGoogle Scholar
23.Barin, I., Thermochemical Data of Pure Substances (VCH, Weinheim, Germany, ed. 3, 1995), vol. 1–2.CrossRefGoogle Scholar
24.Gusev, E.P., Buchanan, D.A., Cartier, E., Kumar, A., DiMaria, D., Guha, S., Callegari, A., Zafar, S., Jamison, P.C., Neumayer, D.A., Copel, M., Gribelyuk, M.A., Okorn-Schmidt, H., D'Emic, C., Kozlowski, P., Chan, K., Bojarczuk, N., Ragnarsson, L.-Å., Ronsheim, P., Rim, K., Fleming, R.J., Mocuta, A., Ajmera, A., in IEDM Technical Digest 2001 (IEEE, Piscataway, NJ, 2002), pp. 451454.Google Scholar
25.Guha, S., Cartier, E., Gribelyuk, M.A., Bojarczuk, N.A., Copel, M.C., Appl. Phys. Lett. 77, 2710 (2000).CrossRefGoogle Scholar
26.Hubbard, K.J., Schlom, D.G., J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
27.Schlom, D.G., Haeni, J.H., MRS Bull. 27, 198 (2002).CrossRefGoogle Scholar
28.Billman, C.A., Tan, P.H., Hubbard, K.J., Schlom, D.G., in Mater. Res. Soc. Symp. Proc. 567, Huff, H.R., Richter, C.A., Green, M.L., Lucovsky, G., Hattori, T., Eds. (Materials Research Society, Warrendale, 1999), pp. 409414.Google Scholar
29.Manasevit, H.M., Simpson, W.I., J. Appl. Phys. 35, 1349 (1964).CrossRefGoogle Scholar
30.Manasevit, H.M., Miller, A., Morritz, F.L., Nolder, R., Trans. Metall. Soc. AIME 233, 540 (1965).Google Scholar
31.Chu, T.L., Francombe, M.H., Gruber, G.A., Oberly, J.J., Tallman, R.L., Deposition of Silicon on Insulating Substrates (Report No. AFCRL-65–574, Westinghouse Research Laboratories, Pittsburgh, PA, 1965), pp. 3134 and 41–44 (NTIS ID No. AD-619 992).Google Scholar
32.Manasevit, H.M., Forbes, D.H., Cadoff, I.B., Trans. Metall. Soc. AIME 236, 275 (1966).Google Scholar
33.Filby, J.D., Nielsen, S., Br. J. Appl. Phys. 18, 1357 (1967).CrossRefGoogle Scholar
34. H.M Manasevit, J. Cryst. Growth 22, 125 (1974).CrossRefGoogle Scholar
35.Ponce, F.A., Appl. Phys. Lett. 41, 371 (1982).CrossRefGoogle Scholar
36.Morita, M., Fukumoto, H., Imura, T., Osaka, Y., Ichihara, M., J. Appl. Phys. 58, 2407 (1985).CrossRefGoogle Scholar
37.Osaka, Y.. Imura, T., Nishibayashi, Y., Nishiyama, F., J. Appl. Phys. 63, 581 (1988).CrossRefGoogle Scholar
38.Kado, Y., Arita, Y., J. Appl. Phys. 61, 2398 (1987).CrossRefGoogle Scholar
39.Kado, Y., Arita, Y., in Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials (The Japan Society of Applied Physics, Tokyo, 1986), pp. 4548.Google Scholar
40.Kado, Y., Arita, Y., in Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials (The Japan Society of Applied Physics, Tokyo, 1988), pp. 181184.Google Scholar
41.Ishida, M., Katakabe, I., Nakamura, T., Ohtake, N., Appl. Phys. Lett. 52, 1326 (1988).CrossRefGoogle Scholar
42.Sawada, K., Ishida, M., Nakamura, T., Ohtake, N., Appl. Phys. Lett. 52, 1672 (1988).CrossRefGoogle Scholar
43.Sawada, K., Ishida, M., Nakamura, T., Suzaki, T., J. Cryst. Growth 95, 494 (1989).CrossRefGoogle Scholar
44.Ishida, M., Sawada, K., Yamaguchi, S., Nakamura, T., Suzaki, T., Appl. Phys. Lett. 55, 556 (1989).CrossRefGoogle Scholar
45.Ishida, M., Yamaguchi, S., Masa, Y., Nakamura, T., Hikita, Y., J. Appl. Phys. 69, 8408 (1991).CrossRefGoogle Scholar
46.Myoren, H., Nishiyama, Y., Fukumoto, H., Nasu, H., Osaka, Y., Jpn. J. Appl. Phys. 28, 351 (1989).CrossRefGoogle Scholar
47.Fukumoto, H., Imura, T., Osaka, Y., Appl. Phys. Lett. 55, 360 (1989).CrossRefGoogle Scholar
48.Fukumoto, H., Yamamoto, M., Osaka, Y., Proc. Electrochem. Soc. 90, 239 (1990).Google Scholar
49.Yamamoto, M., Fukumoto, H., Osaka, Y., in Mater. Res. Soc. Proc. 221, Farrow, R.F.C., Harbison, J.P., Peercy, P.S., Zangwill, A., Eds. (Materials Research Society, Warrendale, PA, 1991), p. 35.Google Scholar
50.Fork, D.K., Ponce, F.A., Tramontana, J.C., Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).CrossRefGoogle Scholar
51.Harada, K., Nakanishi, H., Itozaki, H., Yazu, S., Jpn. J. Appl. Phys. 30, 934 (1991).CrossRefGoogle Scholar
52.Tiwari, P., Sharan, S., Narayan, J., J. Appl. Phys. 69, 8358 (1991).CrossRefGoogle Scholar
53.Soerensen, G., Gygax, S., Physica B 169, 673 (1991).CrossRefGoogle Scholar
54.Behner, H., Wecker, J., Matthée, Th., Samwer, K., Surf. Interface Anal. 18, 685 (1992).CrossRefGoogle Scholar
55.Matthée, Th., Wecker, J., Behner, H., Friedl, G., Eibl, O., Samwer, K., Appl. Phys. Lett. 61, 1240 (1992).CrossRefGoogle Scholar
56.Lubig, A., Buchal, Ch., Schubert, J., Copetti, C., Guggi, D., Jia, C.L., Stritzker, B., J. Appl. Phys. 71, 5560 (1992).CrossRefGoogle Scholar
57.Lubig, A., Buchal, Ch., Guggi, D., Jia, C.L., Stritzker, B., Thin Solid Films 217, 125 (1992).CrossRefGoogle Scholar
58.Iizuka, H., Yokoo, K., Ono, S., Appl. Phys. Lett. 61, 2978 (1992).CrossRefGoogle Scholar
59.Bardal, A., Eibl, O., Matthée, Th., Friedl, G., Wecker, J., J. Mater. Res. 8, 2112 (1993).CrossRefGoogle Scholar
60.Tarsa, E.J., Speck, J.S., Robinson, McD., Appl. Phys. Lett. 63, 539 (1993).CrossRefGoogle Scholar
61.McKee, R.A., Walker, F.J., Chisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).CrossRefGoogle Scholar
62.McKee, R.A., Walker, F.J., Chisholm, M.F., Science 293, 468 (2001).CrossRefGoogle Scholar
63.Liu, J.P., Zaumseil, P., Bugiel, E., Osten, H.J., Appl. Phys. Lett. 79, 671 (2001).CrossRefGoogle Scholar
64.Narayanan, V., Guha, S., Copel, M., Bojarczuk, N.A., Flaitz, P.L., Gribelyuk, M., Appl. Phys. Lett. 81, 4183 (2002).CrossRefGoogle Scholar
65.Kim, H., McIntyre, P.C., Chui, C.O., Saraswat, K.C., Stemmer, S., J. Appl. Phys. 96, 3467 (2004).CrossRefGoogle Scholar
66.Klenov, D.O., Edge, L.F., Schlom, D.G., Stemmer, S., Appl. Phys. Lett. 86, 051901 (2005).CrossRefGoogle Scholar
67.Fissel, A., Kuhne, D., Bugiel, E., Osten, H.J., Appl. Phys. Lett. 88, 153105 (2006).CrossRefGoogle Scholar
68.Schmehl, A., Vaithyanathan, V., Herrnberger, A., Thiel, S., Richter, C., Liberati, M., Heeg, T., Röckerath, M., Fitting Kourkoutis, L., Mühlbaur, S., Böni, P., Muller, D.A., Barash, Y., Schubert, J., Idzerda, Y., Mannhart, J., Schlom, D.G., Nature Mater. 6, 882 (2007).CrossRefGoogle Scholar
69.Guo, W., Allenic, A., Chen, Y.B., Pan, X.Q., Tian, W., Adamo, C., Schlom, D.G., Appl. Phys. Lett. 92, 072101 (2008).CrossRefGoogle Scholar
70.Lettieri, J., Haeni, J.H., Schlom, D.G., J. Vac. Sci. Technol. A 20, 1332 (2002).CrossRefGoogle Scholar
71.Il'chenko, V. V., Kuznetsov, G.V., Strikha, V.I., Tsyganova, A.I., Mikroelektronika 27, 340 (1998) [Russ. Microelectron. 27, 291 (1998)].Google Scholar
72.Il'chenko, V.V., Kuznetsov, G.V., Pis'ma Zh. Tekh. Fiz. 27, 58 (2001) [Sov. Tech. Phys. Lett. 27, 333 (2001)].Google Scholar
73.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
74.DiStefano, T.H., Eastman, D.E., Solid State Commun. 9, 2259 (1971).CrossRefGoogle Scholar
75.Brown, G.A., Robinette, W.C. Jr., Carlson, H.G., J. Electrochem. Soc. 115, 948 (1968).CrossRefGoogle Scholar
76.Goodman, A.M., Appl. Phys. Lett. 13, 275 (1968).CrossRefGoogle Scholar
77.French, R.H., J. Am. Ceram. Soc. 73, 477 (1990).CrossRefGoogle Scholar
78.Roessler, D.M., Walker, W.C., Phys. Rev. 159, 733 (1967).CrossRefGoogle Scholar
79.Bortz, M.L., French, R.H., Jones, D.J., Kasowski, R.V., Ohuchi, F.S., Phys. Scripta 41, 537 (1990).CrossRefGoogle Scholar
80.Abramov, V.N., Kuznetsov, A.I., Fiz. Tverd. Tela (Leningrad) 20, 689 (1978) [Sov. Phys. Solid State 20, 399 (1978)].Google Scholar
81.Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, O. Madelung, M. Schulz, H. Weiss, Eds. (Springer, Berlin, 1982), vol. 17b, pp. 22 and 27.Google Scholar
82.Zollner, S., private communication.Google Scholar
83.Afanas'ev, V. V., Shamuilia, S., Badylevich, M., Stesmans, A., Edge, L.F., Tian, W., Schlom, D.G., Lopes, J.M.J., Roeckerath, M., Schubert, J., Microelectron. Eng. 84, 2278 (2007).CrossRefGoogle Scholar
84.Tippins, H.H., J. Phys. Chem. Solids 27, 1069 (1966).CrossRefGoogle Scholar
85.Derbeneva, S.S., Batsanov, S.S., Dokl. Chem. Akad. Nauk SSSR 175, 1062 (1967) [Sov. Chem. Dokl. 175, 710 (1967)].Google Scholar
86.Lim, S.-G., Kriventsov, S., Jackson, T.N., Haeni, J.H., Schlom, D.G., Balbashov, A.M., Uecker, R., Reiche, P., Freeouf, J.L., Lucovsky, G., J. Appl. Phys. 91, 4500 (2002).CrossRefGoogle Scholar
87.Christen, H.M., Jellison, G.E. Jr., Ohkubo, I., Huang, S., Reeves, M.E., Cicerrella, E., Freeouf, J.L., Jia, Y., Schlom, D.G., Appl. Phys. Lett. 88, 262906 (2006).CrossRefGoogle Scholar
88.Andreeva, A.F., Gil'man, I.Y., Zh. Prikl. Spektrosk. 28, 895 (1978) [J. Appl. Spectrosc. (USSR) 28, 610 (1978)].Google Scholar
89.The Oxide Handbook, G.V. Samsonov, Ed. (IFI/Plenum, New York, ed. 2, 1982), pp. 213.Google Scholar
90.Lucovsky, G., Hong, J.G., Fulton, C.C., Zou, Y., Nemanich, R.J., Ade, H., Schlom, D.G., Freeouf, J.L., Phys. Status Solidi B 241, 2221 (2004).CrossRefGoogle Scholar
91.French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.-N., Ching, W.Y., Phys. Rev. B 49, 5133 (1994).CrossRefGoogle Scholar
92.Samara, G.A., J. Appl. Phys. 68, 4214 (1990).CrossRefGoogle Scholar
93.Ovanesyan, K.L., Petrosyan, A.G., Shirinyan, G.O., Pedrini, C., Zhang, L., Opt. Mater. 10, 291 (1998).CrossRefGoogle Scholar
94.Lopes, J.M.J., Roeckerath, M., Heeg, T., Rije, E., Schubert, J., Mantl, S., Afanas'ev, V. V., Shamuilia, S., Stesmans, A., Jia, Y., Schlom, D.G., Appl. Phys. Lett. 89, 222902 (2006).CrossRefGoogle Scholar
95.Schubert, J., Trithaveesak, O., Zander, W., Roeckerath, M., Heeg, T., Chen, H.Y., Jia, C.L., Meuffels, P., Jia, Y., Schlom, D.G., Appl. Phys. A 90, 577 (2008).CrossRefGoogle Scholar
96.Afanas'ev, V.V., Stesmans, A., Zhao, C., Caymax, M., Heeg, T., Schubert, J., Jia, Y., Schlom, D.G., Lucovsky, G., Appl. Phys. Lett. 85, 5917 (2004).CrossRefGoogle Scholar
97.Arima, T., Tokura, Y., Torrance, J.B., Phys. Rev. B 48, 17006 (1993).CrossRefGoogle Scholar
98.Heeg, T., Schubert, J., Buchal, C., Cicerrella, E., Freeouf, J.L., Tian, W., Jia, Y., Schlom, D.G., Appl. Phys. A 83, 103 (2006).CrossRefGoogle Scholar
99.Afanas'ev, V.V., Stesmans, A., Edge, L.F., Schlom, D.G., Heeg, T., Schubert, J., Appl. Phys. Lett. 88, 032104 (2006).CrossRefGoogle Scholar
100. Data from Reference 101 extrapolated to α = 103 cm−1 after R.W. Collins, K. Vedam, in Encyclopedia of Applied Physics, G.L. Trigg, Ed. (VCH, New York, 1995), vol. 12, pp. 285336.Google Scholar
101.Sata, N., Ishigame, M., Shin, S., Solid State Ionics 86–88, 629 (1996).CrossRefGoogle Scholar
102.Gusev, E.P., Narayanan, V., Frank, M.M., IBM J. Res. Dev. 50, 387 (2006).CrossRefGoogle Scholar
103.Chau, R., Datta, S., Doczy, M., Doyle, B., Kavalieros, J., Metz, M., IEEE Electron Device Lett. 25, 408 (2004).CrossRefGoogle Scholar
104.Copel, M., Cartier, E., Gusev, E.P., Guha, S., Bojarczuk, N., Poppeller, M., Appl. Phys. Lett. 78, 2670 (2001).CrossRefGoogle Scholar
105.Preisler, E.J., Guha, S., Copel, M., Bojarczuk, N.A., Reuter, M.C., Gusev, E., Appl. Phys. Lett. 85, 6230 (2004).CrossRefGoogle Scholar
106.Doris, B., Park, D.G., Settlemyer, K., Jamison, P., Boyd, D., Li, Y., Hagan, J., Staendert, T., Mezzapelli, J., Dobuzinsky, D., Linder, B., Narayanan, V., Callegari, S., Gousev, E., Guarini, K., Jammy, R., Leong, M., in International Symposium on VLSI Technology (VLSI-TSA-TECH) (IEEE, Piscataway, NJ, 2005), pp. 101102.Google Scholar
107.Taylor, W.J. Jr., Capasso, C., Min, B., Winstead, B., Verret, E., Loiko, K., Gilmer, D., Hegde, R.I., Schaeffer, J., Luckowski, E., Martinez, A., Raymond, M., Happ, C., Triyoso, D.H., Kalpat, S., Haggag, A., Roan, D., Nguyen, J.-Y., La, L.B., Hebert, L., Smith, J., Jovanovic, D., Burnett, D., Foisy, M., Cave, N., Tobin, P.J., Samavedam, S.B., White, B.E. Jr., Venkatesan, S., in IEDM Technical Digest 2006 (IEEE, Piscataway, NJ, 2007), pp. 14.Google Scholar
108.Shiraishi, K., Yamada, K., Torii, K., Akasaka, Y., Nakajima, K., Konno, M., Chikyow, T., Kitajima, H., Arikado, T., Jpn. J. Appl. Phys., Part 2 43, L1413 (2004).CrossRefGoogle Scholar
109.Cartier, E., McFeely, F.R., Narayanan, V., Jamison, P., Linder, B.P., Copel, M., Paruchuri, V.K., Basker, V.S., Haight, R., Lim, D., Carruthers, R., Shaw, T., Steen, M., Sleight, J., Rubino, J., Deligianni, H., Guha, S., Jammy, R., Shahidi, G., in International Symposium on VLSI Technology (VLSI-TSA-TECH) (IEEE, Piscataway, NJ, 2005), pp. 230231.Google Scholar
110.Xiong, K., Robertson, J., Gibson, M.C., Clarke, S.J., Appl. Phys. Lett. 87, 183505 (2005).CrossRefGoogle Scholar
111.Guha, S., Narayanan, V., Phys. Rev. Lett. 98, 196101 (2007).CrossRefGoogle Scholar
112.Fischetti, M.V., Neumayer, D.A., Cartier, E.A., J. Appl. Phys. 90, 4587 (2001).CrossRefGoogle Scholar
113.Peterson, J.J., Young, C.D., Barnett, J., Gopalan, S., Gutt, J., Lee, C.-H., Li, H.-J., Hou, T.-H., Kim, Y., Lim, C., Chaudhary, N., Moumen, N., Lee, B.-H., Bersuker, G., Brown, G.A., Zeitzoff, P.M., Gardner, M.I., Murto, R.W., Huff, H.R., Electrochem. Solid-State Lett. 7, G164 (2004).CrossRefGoogle Scholar
114.Narayanan, V., Paruchuri, V.K., Bojarczuk, N.A., Linder, B.P., Doris, B., Kim, Y.H., Zafar, S., Stathis, J., Brown, S., Arnold, J., Copel, M., Steen, M., Cartier, E., Callegari, A., Jamison, P., Locquet, J.-P., Lacey, D.L., Wang, Y., Batson, P.E., Ronsheim, P., Jammy, R., Chudzik, M.P., Ieong, M., Guha, S., Shahidi, G., Chen, T.C., in 2006 Symposium on VLSI Technology (IEEE, Piscataway, NJ, 2006), pp. 178179.Google Scholar
115.Guha, S., Paruchuri, V.K., Copel, M., Narayanan, V., Wang, Y.Y., Batson, P.E., Bojarczuk, N.A., Linder, B., Doris, B., Appl. Phys. Lett. 90, 092902 (2007).CrossRefGoogle Scholar
116.Chudzik, M., Doris, B., Mo, R., Sleight, J., Cartier, E., Dewan, C., Park, D., Bu, H., Natzle, W., Yan, W., Ouyang, C., Henson, K., Boyd, D., Callegari, S., Carter, R., Casarotto, D., Gribelyuk, M., Hargrove, M., He, W., Kim, Y., Linder, B., Moumen, N., Paruchuri, V.K., Stathis, J., Steen, M., Vayshenker, A., Wang, X., Zafar, S., Ando, T., Iijima, R., Takayanagi, M., Narayanan, V., Wise, R., Zhang, Y., Divakaruni, R., Khare, M., Chen, T.C., in 2007 Symposium on VLSI Technology (IEEE, Piscataway, NJ, 2007), pp. 194195.CrossRefGoogle Scholar
117.Sivasubramani, P., Böscke, T.S., Huang, J., Young, C.D., Kirsch, P.D., Krishnan, S.A., Quevedo-Lopez, M.A., Govindarajan, S., Ju, B.S., Harris, H.R., Lichtenwalner, D.J., Jur, J.S., Kingon, A.I., Kim, J., Gnade, B.E., Wallace, R.M., Bersuker, G., Lee, B.H., Jammy, R., in 2007 Symposium on VLSI Technology (IEEE, Piscataway, NJ, 2007), pp. 6869.CrossRefGoogle Scholar
118.Kirsch, P.D., Sivasubramani, P., Huang, J., Young, C.D., Quevedo-Lopez, M.A., Wen, H.C., Alshareef, H., Choi, K., Park, C.S., Freeman, K., Hussain, M.M., Bersuker, G., Harris, H.R., Majhi, P., Choi, R., Lysaght, P., Lee, B.H., Tseng, H.-H., Jammy, R., Böscke, T.S., Lichtenwalner, D.J., Jur, J.S., Kingon, A.I., Appl. Phys. Lett. 92, 092901 (2008).CrossRefGoogle Scholar
119.McPherson, J.W., Kim, J., Shanware, A., Mogul, H., Rodriguez, J., IEEE Trans. Electron Devices 50, 1771 (2003).CrossRefGoogle Scholar
120.Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., Ghibaudo, G., IEEE Trans. Device Mater. Reliabilty 5, 5 (2005).CrossRefGoogle Scholar
121.Kang, A.Y., Lenahan, P.M., Conley, J.F. Jr.,, Appl. Phys. Lett. 83, 3407 (2003).CrossRefGoogle Scholar
122.Datta, S., Dewey, G., Doczy, M., Doyle, B.S., Jin, B., Kavalieros, J., Kotlyar, R., Metz, M., Zelick, N., Chau, R., in IEDM Technical Digest 2003 (IEEE, Piscataway, NJ, 2004), pp. 653656.Google Scholar
123.Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., Brazier, M., Buehler, M., Cappellani, A., Chau, R., Choi, C.-H., Ding, G., Fischer, K., Ghani, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., He, J., Hicks, J., Huessner, R., Ingerly, D., Jain, P., James, R., Jong, L., Joshi, S., Kenyon, C., Kuhn, K., Lee, K., Liu, H., Maiz, J., McIntyre, B., Moon, P., Neirynck, J., Pae, S., Parker, C., Parsons, D., Prasad, C., Pipes, L., Prince, M., Ranade, P., Reynolds, T., Sandford, J., Shifren, L., Sebastian, J., Seiple, J., Simon, D., Sivakumar, S., Smith, P., Thomas, C., Troeger, T., Vandervoorn, P., Williams, S., Zawadzki, K., in IEDM Technical Digest 2007 (IEEE, Piscataway, NJ, 2008), pp. 247250.Google Scholar
124.Auth, C., Buehler, M., Cappellani, A., Choi, C.-H., Ding, G., Han, W., Joshi, S., McIntyre, B., Prince, M., Ranade, P., Sandford, J., Thomas, C., Intel Technol. J. 12, 77 (2008).Google Scholar
125.Edge, L.F., Schlom, D.G., Brewer, R.T., Chabal, Y.J., Williams, J.R., Chambers, S.A., Hinkle, C., Lucovsky, G., Yang, Y., Stemmer, S., Copel, M., Holländer, B., Schubert, J., Appl. Phys. Lett. 84, 4629 (2004).CrossRefGoogle Scholar
126.Kim, K.H., Farmer, D.B., Lehn, J.-S.M., Rao, P. V., Gordon, R.G., Appl. Phys. Lett. 89, 133512 (2006).CrossRefGoogle Scholar
127.Kotlyar, R., Giles, M.D., Matagne, P., Obradovic, B., Shifren, L., Stettler, M., Wang, E., in IEDM Technical Digest 2004 (IEEE, Piscataway, NJ, 2005), pp. 391394.Google Scholar
128.Shang, H., Frank, M.M., Gusev, E.P., Chu, J.O., Bedell, S.W., Guarini, K.W., Ieong, M., IBM J. Res. Dev. 50, 377 (2006).CrossRefGoogle Scholar
129.Zhang, G., Wang, X., Li, X., Lu, Y., Javey, A., Dai, H., in IEDM Technical Digest 2006 (IEEE, Piscataway, NJ, 2007), pp. 14.Google Scholar
130.Datta, S., Ashley, T., Brask, J., Buckle, L., Doczy, M., Emeny, M., Hayes, D., Hilton, K., Jefferies, R., Martin, T., Phillips, T.J., Wallis, D., Wilding, P., Chau, R., in IEDM Technical Digest 2005 (IEEE, Piscataway, NJ, 2006), pp. 763766.Google Scholar
131.Xuan, Y., Wu, Y.Q., Ye, P.D., IEEE Electron Device Lett. 29, 294 (2008).CrossRefGoogle Scholar
132.Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
133.Peacock, P.W., Robertson, J., J. Appl. Phys. 92, 4712 (2002).CrossRefGoogle Scholar
134.Robertson, J., Rep. Prog. Phys. 69, 327 (2006).CrossRefGoogle Scholar
135.Afanas'ev, V.V., Stesmans, A., J. Appl. Phys. 102, 081301 (2007).CrossRefGoogle Scholar