Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T06:29:46.416Z Has data issue: false hasContentIssue false

Fundamentals of SiC-Based Device Processing

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since the commercial availability of SiC substrates in 1990, SiC processing technology has advanced rapidly. There have been demonstrations of monolithic digital and analogue integrated circuits, complementary metal-oxide-semiconductor (CMOS) analog integrated circuits, nonvolatile random-access memories, self-aligned polysilicon-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), and buried-channel polysilicon-gate charge-coupled devices (CCDs). In this article, we review processing technologies for SiC.

Oxidation

A beneficial feature of SiC processing technology is that SiC can be thermally oxidized to form SiO2. When a thermal oxide of thickness x is grown, 0.5x of the SiC surface is consumed, and the excess carbon leaves the sample as CO. Shown in Figure 1 are the oxide thicknesses as a function of time for the Si-face and the C-face of 6H-SiC, and for Si. The oxidation rates are considerably lower for SiC than for Si. The oxidation rate of the C-face of 6H-SiC is considerably greater than that of the Si-face. Hornetz et al. have shown that the reason for the slower oxidation rate of the Si-face is due to a 1-nm Si4C4−xO2 (x < 2) layer that forms between the SiC and the SiO2 during oxidation of the Si-face. When oxidizing the Si-face, the Si atoms oxidize first, which inhibits the oxidation of the underlying C atoms that are 0.063 nm below the Si atoms. When oxidizing the C-face, the C atoms readily oxidize first to form CO, with no formation of the Si4C4−xO2 layer for temperatures above 1000°C.

Type
Silicon Carbide Electronic Materials and Devices
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xie, W., Cooper, J.A. Jr., and Melloch, M.R., IEEE Electron. Device Lett. 15 (1994) p. 455.CrossRefGoogle Scholar
2.Ryu, S. and Kornegay, K.T., in Proc. 6th Int. Conf. SiC Related Mater., edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (Institute of Physics Conference Series No. 142, Bristol, 1996) p. 789.Google Scholar
3.Brown, D.M., Ghezzo, M., Kretchmer, J., Krishnamurthy, V., Michon, G., and Gati, G., Trans. 2nd Int. High Temp. Electron. Conf. (Sandia National Laboratories, Charlotte, NC, 1994) p. 11.Google Scholar
4.Diogu, K.K., Harris, G.L., Mahajan, A., Adesida, I., Moeller, D.F., and Bertram, R.A., 54th Device Res. Conf. (University of California at Santa Barbara, June 24-26, 1996).Google Scholar
5.Slater, D.B. Jr., Johnson, G.M., Lipkin, L.A., Suvorov, A.V., and Palmour, J.W., 54th Device Res. Conf. (University of California at Santa Barbara, June 24-26, 1996)Google Scholar
6.Xie, W., Cooper, J.A. Jr., Melloch, M.R., Palmour, J.W., and Carter, C.H. Jr., IEEE Electron. Device Lett. 15 (1994) p. 212.CrossRefGoogle Scholar
7.Pan, J.N., Cooper, J.A. Jr., and Melloch, M.R., Electron. Lett. 31 (1995) p. 1200.CrossRefGoogle Scholar
8.Sheppard, S.T., Melloch, M.R., and Cooper, J.A. Jr., IEEE Electron. Device Lett. 17 (1996) p. 4.CrossRefGoogle Scholar
9.Hornetz, B., Michel, H-J., and Halbritter, J., J. Mater. Res. 9 (1994) p. 3088.CrossRefGoogle Scholar
10.Shenoy, J.N., Lipkin, L.A., Chindalore, G.L., Pan, J., Cooper, J.A. Jr., Palmour, J.W., and Melloch, M.R., in Proc. 21st Int. Conf. SiC Related Mater., edited by Goronkin, H. and Mishra, U. (Institute of Physics Conference Series No. 141, Bristol, 1995) p. 449.Google Scholar
11.Goetzberger, A. and Irvin, J.C., IEEE Trans. Electron. Devices 15 (1968) p. 1009.CrossRefGoogle Scholar
12.Sheppard, S.T., Cooper, J.A. Jr., and Melloch, M.R., J. Appl. Phys. 75 (1994) p. 3205.CrossRefGoogle Scholar
13.Shenoy, J.N., Chindalore, G.L., Melloch, M.R., Cooper, J.A. Jr., Palmour, J.W., and Irvine, K.G., J. Electron. Mater. 24 (1995) p. 303.CrossRefGoogle Scholar
14.Nicollian, E.H. and Brews, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, New York, 1982).Google Scholar
15.Shenoy, J.N., Cooper, J.A. Jr., and Melloch, M.R., Appl. Phys. Lett. 68 (1996) p. 803.CrossRefGoogle Scholar
16.Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G., Appl. Phys. Lett. 65 (13) (1994) p. 1659.CrossRefGoogle Scholar
17.Burk, A.A. Jr., Barrett, D.L., Hobgood, H.M., Siergiej, R.R., Braggins, T.T., Clarke, R.C., Eldridge, G.W., and Brandt, C.D., in Proc. 5th Int. Conf. SiC Related Mater., edited by Spencer, M.G., Devaty, R.P., Edmond, J.A., Khan, M.A., Kaplan, R., and Rahman, M. (Institute of Physics Conference Series No. 137, Bristol, 1994) p. 29.Google Scholar
18.Larkins, D.J., Sridhara, S.G., Devaty, R.P., and Choyke, W.J., J. Electron. Mater. 24 (4) (1995) p. 289.CrossRefGoogle Scholar
19.Davis, R.F., Keiner, G., Shur, M., Palmour, J.W., and Edmond, J.A., Proc. IEEE 79 (5) (1991) p. 677.CrossRefGoogle Scholar
20.Rao, M.V., Griffiths, P., Holland, O.W., Keiner, G., Freitas, J.A. Jr., Simons, D.S., Chi, P.H., and Ghezzo, M., J. Appl. Phys. 77 (1995) p. 2479.CrossRefGoogle Scholar
21.Rao, M.V., Griffiths, P., Gardner, J., Holland, O.W., Ghezzo, M., Kretchmer, J., Keiner, G., and Freitas, J.A. Jr., J. Electron. Mater. 25 (1996) p. 75.CrossRefGoogle Scholar
22.Suttrop, W., Zhang, H., Schadt, M., Pensl, G., Dohnke, K., and Leibenzeder, S., Springer Proc. Phys. 71 (1992) p. 143.CrossRefGoogle Scholar
23.Kimoto, T., Itoh, A., Matsunami, H., Nakata, T., and Watanabe, M., J. Electron. Mater. 25 (1996) p. 879.CrossRefGoogle Scholar
24.Ghezzo, M., Brown, D.M., Downey, E., and Kretchmer, J., Appl. Phys. Lett. 63 (1993) p. 1206.CrossRefGoogle Scholar
25.Ghezzo, M., Brown, D.M., Downey, E., Kretchmer, J., Hennessy, W., Polla, D.L., and Bakhru, H., IEEE Electron. Device Lett. 13 (1992) p. 639.CrossRefGoogle Scholar
26.Kimoto, T., Itoh, A., Matsunami, H., Nakata, T., and Watanabe, M., J. Electron. Mater. 24 (1995) p. 235.CrossRefGoogle Scholar
27.Inoue, N., Itoh, A., Kimoto, T., Matsunami, H., Nakata, T., and Watanabe, M., in Proc. 6th Int. Conf. SiC Related Mater., edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (Institute of Physics Conference Series No. 142, Bristol, 1996) p. 525.Google Scholar
28.Lam, M.P., Kornegay, K.T., and Cooper, J.A. Jr., Proc. Int. Semicond. Device Res. Symp. (The Institute of Electrical and Electronic Engineers, Charlottesville, 1995) p. 517.Google Scholar
29.Kimoto, T., Nakajima, T., Matsunami, H., Nakata, T., and Inoue, N., Appl. Phys. Lett. 69 (1996) p. 1113.CrossRefGoogle Scholar
30.Lam, M.P., Kornegay, K.T., Cooper, J.A. Jr., and Melloch, M.R., IEEE Trans. Electron Devices (in press).Google Scholar
31.Bohn, H.G., Williams, J.M., McHargue, C.J., and Begun, G.M., J. Mater. Res. 2 (1987) p. 107.CrossRefGoogle Scholar
32.Xie, W., Shenoy, J.N., Sheppard, S.T., Melloch, M.R., and Cooper, J.A. Jr., Appl. Phys. Lett. 68 (1996) p. 2231.CrossRefGoogle Scholar
33.Pan, J.N., Cooper, J.A. Jr., and Melloch, M.R., in J. Electron. Mater. 26 (1991) p. 208.CrossRefGoogle Scholar
34.Crowley, A.M. and Sze, S.M., J. Appl. Phys. 36 (1965) p. 3212.CrossRefGoogle Scholar
35.Waldrop, J.R., Grant, R.W., Wang, Y.C., and Davis, R.F., J. Appl. Phys. 72 (1992) p. 4757.CrossRefGoogle Scholar
36.Mead, C.A. and Spitzer, W.G., Phys. Rev. 134 (1964) p. A713.CrossRefGoogle Scholar
37.Hagen, S.H., J. Appl. Phys. 39 (1968) p. 1458.CrossRefGoogle Scholar
38.Crofton, J., McMullin, P.G., Williams, J.R., and Bozack, J.J., J. Appl. Phys. 77 (1995) p. 1317.CrossRefGoogle Scholar
39.Porter, L.M., Davis, R.F., Bow, J.S., Kim, M.J., and Carpenter, R.W., J. Mater. Res. 10 (1995) p. 26.CrossRefGoogle Scholar
40.Crofton, J., Barnes, P.A., Williams, J.R., and Edmond, J.A., Appl. Phys. Lett. 62 (1993) p. 384.CrossRefGoogle Scholar
41.Ostling, M. and Lundberg, N., 54th Device Research Conf. (University of California at Santa Barbara, June 24-26, 1996).Google Scholar
42.Porter, L.M. and Davis, R.F., Mater. Sci. Eng. B 34 (1995) p. 83.CrossRefGoogle Scholar
43.Sugiura, J., Lu, W-J., Cadien, K.C., and Steckl, A.J., J. Vac. Sci. Technol. B 4 (1986) p. 349.CrossRefGoogle Scholar
44.Pan, W-S. and Steckl, A.J., J. Electrochem. Soc. 137 (1990) p. 213.CrossRefGoogle Scholar
45.Steckl, A.J. and Yih, P.H., Appl. Phys. Lett. 60 (1992) p. 1966.CrossRefGoogle Scholar