Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T13:30:54.314Z Has data issue: false hasContentIssue false

Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article considers the fundamentals of what happens in a solid when it is impacted by a medium-energy gallium ion. The study of the ion/sample interaction at the nanometer scale is applicable to most focused ion beam (FIB)–based work even if the FIB/sample interaction is only a step in the process, for example, micromachining or microelectronics device processing. Whereas the objective in other articles in this issue is to use the FIB tool to characterize a material or to machine a device or transmission electron microscopy sample, the goal of the FIB in this article is to have the FIB/sample interaction itself become the product. To that end, the FIB/sample interaction is considered in three categories according to geometry: below, at, and above the surface. First, the FIB ions can penetrate the top atom layer(s) and interact below the surface. Ion implantation and ion damage on flat surfaces have been comprehensively examined; however, FIB applications require the further investigation of high doses in three-dimensional profiles. Second, the ions can interact at the surface, where a morphological instability can lead to ripples and surface self-organization, which can depend on boundary conditions for site-specific and compound FIB processing. Third, the FIB may interact above the surface (and/or produce secondary particles that interact above the surface). Such ion beam–assisted deposition, FIB–CVD (chemical vapor deposition), offers an elaborate complexity in three dimensions with an FIB using a gas injection system. At the nanometer scale, these three regimes—below, at, and above the surface—can require an interdependent understanding to be judiciously controlled by the FIB.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Orloff, J., Utlaut, M., Swanson, L., High Resolution FIB and its Applications (Kluwer Academic/Plenum, New York, 2003).Google Scholar
2.Giannuzzi, L.A., Stevie, F.A., Introduction to FIB (Springer, New York, 2005).Google Scholar
3. See the introductory article by C.A. Volkert and A.M. Minor in this issue.Google Scholar
4.Chason, E. et al., Appl. Phys. Rev. 81 (10), 6513 (1997).CrossRefGoogle Scholar
5.Ji, Q. et al., Nucl. Instrum. Methods Phys. Res. Sect. B 241, 335 (2005).CrossRefGoogle Scholar
6. See the article by R. Langford et al. in this issue.Google Scholar
7.Ziegler, J.F., SRIM (2006), http://www.srim.org.Google Scholar
8.Ryssel, H., Ruge, I., Ion Implantation (Wiley, New York, 1986).Google Scholar
9.Cerva, H., Hobler, G., J. Electrochem. Soc. 139 (12), 3631 (1992).CrossRefGoogle Scholar
10.Möller, W., Posselt, M., TRIDYN_FZR User Manual (Forschungszentrum Rossendorf, Dresden, Germany).Google Scholar
11.Giannuzzi, L.A., Microsc. Microanal. 12 (2), 1260 (2006).CrossRefGoogle Scholar
12.Adams, D.P., Vasile, M.J., J. Vac. Sci. Technol., B 24 (2), 836 (2006).CrossRefGoogle Scholar
13.Lugstein, A., Brezna, W., Hobler, G., Bertagnolli, E., J. Vac. Sci. Technol., A 21, 1644 (2003).CrossRefGoogle Scholar
14.Hobler, G., Lugstein, A., Brezna, W., Bertagnolli, E., in Mater. Res. Soc. Symp. Proc. 792, Wang, L.-M. et al., Eds. (Warrendale, PA, 2003) pp. 635640.Google Scholar
15.Kim, H.B., Hobler, G., Lugstein, A., Bertagnolli, E., J. Micromech. Microeng. (2007) in press.Google Scholar
16.Boxleitner, W., Hobler, G., Nucl. Instrum. Methods Phys. Res., Sect. B 180, 125 (2001).CrossRefGoogle Scholar
17.Shinada, T., Okamoto, S., Kobayashi, T., Ohdomari, I., Nature 437, 1128 (2005).CrossRefGoogle Scholar
18.Schenkel, T., Nature Mater. 4, 799 (2005).CrossRefGoogle Scholar
19.Kane, B.E., Nature 393, 133 (1998).CrossRefGoogle Scholar
20.Schenkel, T. et al., Appl. Phys. Lett. 88, 112101 (2006).CrossRefGoogle Scholar
21.Clark, R.G. et al., Philos. Trans. R. Soc. London, Ser. A, 361, 1451 (2003).CrossRefGoogle Scholar
22.Reuss, R.H. et al., J. Vac. Sci. Technol., B 4, 290 (1986).CrossRefGoogle Scholar
23.Persaud, A. et al., Nano Lett. 5, 1087 (2005).CrossRefGoogle Scholar
24.Schenkel, T. et al., J. Vac. Sci. Technol., B 21, 2720 (2003).CrossRefGoogle Scholar
25.Baragiola, R.A., Nucl. Instrum. Methods Phys. Res. B 78, 223 (1993).CrossRefGoogle Scholar
26.Schenkel, T. et al., Microelectron. Eng. 8, 1814 (2006).CrossRefGoogle Scholar
27.Jamieson, D.N. et al., Appl. Phys. Lett. 86, 202101 (2005).CrossRefGoogle Scholar
28.Sigmund, P., J. Mater. Sci. 8, 1545 (1973).CrossRefGoogle Scholar
29.Appleton, B.R. et al., Appl. Phys. Lett. 41 (8), 711 (1982).CrossRefGoogle Scholar
30.Stevie, F.A., Kahora, P.M., Simons, D.S., Chi, P., J. Vac. Sci. Technol., A 6, 76 (1988).CrossRefGoogle Scholar
31.Bradley, R.M., Harper, J.M.E., J. Vac. Sci. Technol., A 6, 2390 (1988).CrossRefGoogle Scholar
32.Mayer, T.M., Chason, E., Howard, A.J., J. Appl. Phys. 76 (3), 1634 (1994).CrossRefGoogle Scholar
33.Carter, G., Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).CrossRefGoogle Scholar
34.Facsko, S. et al., Science 285, 1551 (1999).CrossRefGoogle Scholar
35.Erlebacher, J. et al., Phys. Rev. Lett. 82 (11), 2330 (1999).CrossRefGoogle Scholar
36.Datta, A., Wu, Y.R., Wang, Y.L., Phys. Rev. B 63, 125407 (2001).CrossRefGoogle Scholar
37.Habenicht, S., Lieb, K.P., Koch, J., Wieck, A.D., Phys. Rev. B 65, 115327 (2002).CrossRefGoogle Scholar
38. W.L Chan, Pavenayotin, N., Chason, E., Phys. Rev. B 69, 245413 (2004).Google Scholar
39.Ichim, S., Aziz, M.J., J. Vac. Sci. Technol., B 23, 1068 (2005).CrossRefGoogle Scholar
40.Mayer, T.M., Adams, D.P., Vasile, M.J., Archuleta, K.M., J. Vac. Sci. Technol., A 23, 1579 (2005).CrossRefGoogle Scholar
41.Gray, J.L., Atha, S., Hull, R., Floro, J.A., Nano Lett. 4 (12), 2447 (2004).CrossRefGoogle Scholar
42.Aziz, M.J., Mat. Fys. Medd. Dan Vid Selsk (2006) in press.Google Scholar
43.Makeev, M.A., Cuerno, R., Barabasi, A.L., Nucl. Instrum. Methods Phys. Res., Sect. B 197, 185 (2002).CrossRefGoogle Scholar
44.Levi-Setti, R., Fox, T.R., Lam, K., Nucl. Instr. Meth. 205, 299 (1983).CrossRefGoogle Scholar
45.Kempshall, B.W. et al., J. Vac. Sci. Technol., B 19, 729 (2001).Google Scholar
46.Castro, M., Cuerno, R., Vazquez, L., Gago, R., Phys. Rev. Lett. 94, 016102 (2005).CrossRefGoogle Scholar
47.Chen, H.H. et al., Science 310, 294 (2005).CrossRefGoogle Scholar
48.Teichert, J., Bischoff, L., Kohler, B., Appl. Phys. Lett. 69 (11), 1544 (1996).CrossRefGoogle Scholar
49.Cuenat, A., Aziz, M.J., in Mater. Res. Soc. Symp. Proc. 696, E.A. Stach, E.H. Chason, R. Hull, S.D. Bader, Eds. (2002) pp. 3136.Google Scholar
50.MoberlyChan, W.J., Felter, T.E., Wall, M.A., Microsc. Today, 28 (November 2006).CrossRefGoogle Scholar
51.Santamore, D., Edinger, K., Orloff, J., Melngailis, J., J.Vac. Sci. Technol., B 15, 2346 (1997).CrossRefGoogle Scholar
52.Cuenat, A., Adv. Mater. 17, 2845 (2005).CrossRefGoogle Scholar
53.Adams, D.P., Vasile, M.J., Mayer, T.M., Hodges, V.C., J. Vac. Sci. Technol., B 21, 2334 (2003).CrossRefGoogle Scholar
54.Wendt, U., Nolze, G., Heyse, H., Microsc. Microanal. 12 (suppl. 2), 1302 (2006).CrossRefGoogle Scholar
55.MoberlyChan, W.J., Reyntjens, S., Minor, A.M., Microsc. Microanal. 12 (suppl. 2), 1268 (2006).CrossRefGoogle Scholar
56.Valbusa, U., Boragno, C., Buatier de Mongeot, F., J. Phys.: Condens. Matter 14, 8153 (2002).Google Scholar
57.Brown, A.D., Erlebacher, J., Chan, W.L., Chason, E., Phys. Rev. Lett. 95, 056101 (2005).CrossRefGoogle Scholar
58.Stanishevsky, A., Thin Solid Films 398–399, 560 (2001).CrossRefGoogle Scholar
59.Adams, D.P., Mayer, T.M., Vasile, M.J., Archuleta, K., Appl. Surf. Sci. 252, 2432 (2006).CrossRefGoogle Scholar
60.Russell, P.E. et al., J. Vac. Sci. Technol., B 16 (4), 2494 (1998).CrossRefGoogle Scholar
61.Carter, G., J. Appl. Phys. 85 (1), 455 (1999).CrossRefGoogle Scholar
62.Lugstein, A., Basnor, B., Bertagnolli, E., J. Vac. Sci. Technol., B 20, 2238 (2002).CrossRefGoogle Scholar
63.MoberlyChan, W.J., Mater. Res. Soc. Symp. Proc. 960, N1002 (2006).CrossRefGoogle Scholar
64.Adams, D.P., Vasile, M.J., Mayer, T.M., J. Vac. Sci. Technol., B 24 (4), 1766 (2006).CrossRefGoogle Scholar
65.Ishitani, T., Yaguchi, T., Microsc. Res. Technol. 35, 320 (1996).3.0.CO;2-Q>CrossRefGoogle Scholar
66.Ihsitani, T., Ohnishi, T., J. Vac. Sci. Technol., A 9, 3084 (1991).CrossRefGoogle Scholar
67.Vasile, M.J., Xie, J., Nassar, R., J. Vac. Sci. Technol., B 17 (6), 3085 (1999).CrossRefGoogle Scholar
68.Facsko, S. et al., Phys. Rev. B 69, 153412 (2004).CrossRefGoogle Scholar
69.Karolewski, M.A., Nucl. Instrum. Methods Phys. Res., Sect. B 230, 402 (2005); Kalypso software, www.geocities.com/karolewski/Kalypso.CrossRefGoogle Scholar
70.Tosin, P., Blatter, A., Luthy, W., J. Appl. Phys. 76 (6), 3797 (1995).CrossRefGoogle Scholar
71.Ozhan, A.M. et al., Appl. Phys. Lett. 75 (23), 3716 (1999).Google Scholar
72.Coyne, E., Magee, J., Mannion, P., O'Connor, G., Proc. SPIE 4876, 487 (2003).CrossRefGoogle Scholar
73.Brooks, J.N., Fusion Eng. Des. 60, 515 (2002).CrossRefGoogle Scholar
74.Ishitani, T., Koike, H., Yaguchi, T., Kamino, T., J. Vac. Sci. Technol., B 16 (4), 1907 (1998).CrossRefGoogle Scholar
75.Michael, J.R., Microsc. Microanal. 12 (2), 1248 (2005).CrossRefGoogle Scholar
76.Carter, G., Vacuum 80, 475 (2006).CrossRefGoogle Scholar
77.Kammler, M., Hull, R., Reuter, M.C., Ross, F.M., Appl. Phys. Lett. 82, 1903 (2003).CrossRefGoogle Scholar
78.Bergman, A.A. et al., Langmuir 14, 6785 (1998).CrossRefGoogle Scholar
79.Gamo, K. et al., Jpn. J. Appl. Phys. 23, L293 (1984).CrossRefGoogle Scholar
80.Shedd, G.M., Lezec, H., Dubner, A.D., Melngailis, J., Appl. Phys. Lett. 49, 1584 (1986).CrossRefGoogle Scholar
81.Kaufmann, H.C., Thompson, W.B., Dunn, G.J., Proc. SPIE 632, 60 (1986).CrossRefGoogle Scholar
82.Harriott, L.R., Vasile, M.J., J. Vac. Sci. Technol., B 6, 1035 (1988).CrossRefGoogle Scholar
83.Kubena, R.L., Stratton, F.P., Mayer, T.M., J. Vac. Sci. Technol., B 6, 1865 (1988).CrossRefGoogle Scholar
84.Gross, M.E., Harriott, L.R., Opila, R.L. Jr., J. Appl. Phys. 68, 4820 (1990).CrossRefGoogle Scholar
85.Blauner, P.G., Ro, J.S., Butt, Y., Melngailis, J., J. Vac. Sci. Technol., B 7, 609 (1989).CrossRefGoogle Scholar
86.Young, R.J., Cleaver, J.R.A., Ahmed, H., J. Vac. Sci. Technol., B 11 (2), 234 (1993).CrossRefGoogle Scholar
87.Funatsu, J., Thompson, C.V., Melngailis, J., Walpole, J.N., J. Vac. Sci. Technol., B 14, 179(1996).CrossRefGoogle Scholar
88.Vasile, M.J., Harriott, L.R., J. Vac. Sci. Technol., B 7, 1954 (1989).CrossRefGoogle Scholar
89.Ro, J.S., Thompson, C.V., Melngailis, J., Thin Solid Films 258, 333 (1995).CrossRefGoogle Scholar
90.Chiang, T.P., Sawin, H.H., Thompson, C.V., J. Vac. Sci. Technol., A 15, 3104 (1997).CrossRefGoogle Scholar
91.Dubner, A.D., Wagner, A., Melngailis, J., Thompson, C.V., J. Appl. Phys. 70, 665 (1991).CrossRefGoogle Scholar
92.Melngailis, J., Proc. SPIE 1465, 36 (1991).CrossRefGoogle Scholar
93.Ray, V., J. Vac. Sci. Technol., B 22 (6), 3008 (2004).CrossRefGoogle Scholar
94.Ishitani, T., Ohnishi, T., Kawanami, Y., Jpn. J. Appl. Phys. 29, 2283 (1990).CrossRefGoogle Scholar
95.Vasile, M.J. et al., Rev. Sci. Instrum. 62, 2167 (1991).CrossRefGoogle Scholar
96. See the article by Uchic, M. et al. in this issue.Google Scholar
97.Melngailis, J., J. Vac. Sci. Technol., B 5, 469 (1987).CrossRefGoogle Scholar
98.Harriott, L.R., Appl. Surf. Sci. 36, 432 (1989).CrossRefGoogle Scholar
99.Economou, W.P., Shaver, D.C., Ward, B., Proc. SPIE 773, 201 (1987).CrossRefGoogle Scholar
100.Yamamoto, M. et al., Proc. SPIE 632, 97 (1986).CrossRefGoogle Scholar
101.Puers, R., Reyntjens, S., De Bruyker, D., Sens. Actuators, A 97–98, 208 (2002).CrossRefGoogle Scholar
102.Khizroev, S., Bain, J.A., Litvinov, D., Nanotechnology 13, 619 (2002).CrossRefGoogle Scholar
103.Ford, E.M., Ahmed, H., Appl. Phys. Lett. 75, 421 (1999).CrossRefGoogle Scholar
104.Ebbesen, T.W. et al., Nature 382, 54 (1996).CrossRefGoogle Scholar
105.Demarco, A.J., Melngailis, J., J. Vac. Sci. Technol., B 17, 3154 (1999).CrossRefGoogle Scholar
106.Morita, T. et al., J. Vac. Sci. Technol., B 21, 2737 (2003).CrossRefGoogle Scholar
107.Kometani, R. et al., Microelectron. Eng. 83, 1642 (2006).CrossRefGoogle Scholar
108.Lin, J.-F., Bird, J.P., Rotkina, L., Bennett, P.A., Appl. Phys. Lett. 82, 802 (2003).CrossRefGoogle Scholar
109.Sanchez, E.J., Krug, J.T., Xie, X.S., Rev. Sci. Instrum. 73 (11), 3901 (2002).CrossRefGoogle Scholar
110.Botman, A., Mulders, J.J.L., Weemaes, R., Mentink, S., Nanotechnology 17, 3779 (2006).CrossRefGoogle Scholar
111.Blauner, P.G. et al., J. Vac. Sci. Technol., B 7, 1816 (1989).CrossRefGoogle Scholar
112.Campbell, A.N. et al., Proc. 23rd Int. Symp. Testing Failure Analysis (1997) p. 223.Google Scholar
113.Edinger, K., Melngailis, J., Orloff, J., J. Vac. Sci. Technol., B 16, 3311 (1998).CrossRefGoogle Scholar
114.Reyntjens, S., Puers, R., J. Micromech. Microeng. 10, 181 (2000).CrossRefGoogle Scholar
115.Ishida, M. et al., J. Vac. Sci. Technol., B 21, 2728 (2003).CrossRefGoogle Scholar
116.Nakamatsu, K.-I. et al., J. Vac. Sci. Technol., B 23, 2801 (2005).CrossRefGoogle Scholar
117.Tao, T., Ro, J., Melngailis, J., J. Vac. Sci. Technol., B 8, 1826 (1990).CrossRefGoogle Scholar
118.Smith, N. et al., J. Vac. Sci. Technol., B 24 (6), 2902 (2006).CrossRefGoogle Scholar
119.Mayer, T.M., Allen, S.D., Thin Film Processes II, Vossen, J.L., Kern, W., Eds. (Academic Press, New York, 1991) pp. 621670.CrossRefGoogle Scholar
120. FEI Co. SPI-mode technology, www.feico.com.Google Scholar