Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T12:53:17.808Z Has data issue: false hasContentIssue false

Functionalization of aliphatic polyketones

Published online by Cambridge University Press:  13 March 2013

Philip C. Zehetmaier
Affiliation:
Technical University of Munich, Germany; [email protected]
Sergei I. Vagin
Affiliation:
Technical University of Munich, Germany; [email protected]
Bernhard Rieger
Affiliation:
Technical University of Munich, Germany; [email protected]
Get access

Abstract

Although aliphatic polyketones built from carbon monoxide and olefins have not yet found widespread application in industry and everyday life, this material has great potential, as its properties can be tuned, almost boundlessly, to desired traits or values. For example, the melting temperature and the phase transition temperatures can be varied largely, therefore making it possible to design a polymeric material with adjustable properties. Regardless of its feasibility for replacing common commodity polymers such as polypropylene or polyethylene in some special utilization areas, we want to highlight some aspects for the great potential of aliphatic polyketones as a functional material in drug delivery, bioengineering, optical devices, and other applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sommazzi, A., Garbassi, F., Prog. Polym. Sci. 22, 1547 (1997).CrossRefGoogle Scholar
2. Lommerts, B.J., Klop, E.A., Aerts, J., J. Polym. Sci., Part B: Polym. Phys. 31, 1319 (1993).CrossRefGoogle Scholar
3. Del, N.M.A., Mensitieri, G., Nicolais, L., Sommazzi, A., Garbassi, F., J. Appl. Polym. Sci. 50, 1261 (1993).Google Scholar
4. Sen, A., Adv. Polym. Sci. 7374, 125 (1986).CrossRefGoogle Scholar
5. Sen, A., Acc. Chem. Res. 26, 303 (1993).CrossRefGoogle Scholar
6. Brubaker, M.M., Coffman, D.D., Hoehn, H.H., J. Am. Chem. Soc. 74, 1509 (1952).CrossRefGoogle Scholar
7. Shell, Carilon Thermoplastic Polymers, Information Sheet (1994).Google Scholar
8. Eur. Plast. News 57 (October 1995).Google Scholar
9. Bianchini, C., Meli, A., Coord. Chem. Rev. 225, 35 (2002).CrossRefGoogle Scholar
10. Drent, E., Van Broekhoven, B.J.A.M., Doyle, M.J., J. Organomet. Chem. 417, 235 (1991).CrossRefGoogle Scholar
11. Hearley, A.K., Nowack, R.J., Rieger, B., Organometallics 24, 2755 (2005).CrossRefGoogle Scholar
12. Abu-Surrah, A.S., Wursche, R., Rieger, B., Macromol. Chem. Phys. 198, 1197 (1997).CrossRefGoogle Scholar
13. Nieuwhof, R.P., Marcelis, A.T.M., Sudholter, E.J.R., Wursche, R., Rieger, B., Macromol. Chem. Phys. 201, 2484 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
14. Nozaki, K., Kawashima, Y., Oda, T., Hiyama, T., Kanie, K., Kato, T., Macromolecules 35, 1140 (2002).CrossRefGoogle Scholar
15. Kawashima, Y., Nozaki, K., Hiyama, T., Yoshio, M., Kanie, K., Kato, T., J. Polym. Sci., Part A: Polym. Chem. 41, 3556 (2003).CrossRefGoogle Scholar
16. Reuter, P., Fuhrmann, R., Mucke, A., Voegele, J., Rieger, B., Franke, R.P., Macromol. Biosci. 3, 123 (2003).CrossRefGoogle Scholar
17. Rohlke, W., Fuhrmann, R., Franke, R.P., Mucke, A., Voegele, J., Rieger, B., Macromol. Biosci. 3, 131 (2003).CrossRefGoogle Scholar
18. Malinova, V., Rieger, B., Macromol. Rapid Commun. 26, 945 (2005).CrossRefGoogle Scholar
19. Malinova, V., Rieger, B., Biomacromolecules 7, 2931 (2006).CrossRefGoogle Scholar
20. Bartsch, G.C. Jr., Malinova, V., Volkmer, B.E., Hautmann, R.E., Rieger, B., BJU Int. 99, 447 (2007).CrossRefGoogle Scholar
21. Jiang, Z., Sen, A., J. Am. Chem. Soc. 117, 4455 (1995).CrossRefGoogle Scholar
22. Kacker, S., Jiang, Z., Sen, A., Macromolecules 29, 5852 (1996).CrossRefGoogle Scholar
23. Wursche, R., Rieger, B., Macromol. Chem. Phys. 201, 2861 (2000).3.0.CO;2-R>CrossRefGoogle Scholar
24. Wursche, R., Rieger, B., Macromol. Chem. Phys. 201, 2869 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
25. Di Benedetto, S., Consiglio, G., Helv. Chim. Acta 80, 2204 (1997).CrossRefGoogle Scholar
26. Fujita, T., Nakano, K., Yamashita, M., Nozaki, K., J. Am. Chem. Soc. 128, 1968 (2006).CrossRefGoogle Scholar
27. Lee, J.T., Alper, H., Chem. Comm. 2189 (2000).CrossRefGoogle Scholar
28. Klok, H.-A., Eibeck, P., Schmid, M., Abu-Surrah, A.S., Möller, M., Rieger, B., Macromol. Chem. Phys. 198, 2759 (1997).CrossRefGoogle Scholar
29. Mücke, A., Rieger, B., Macromolecules 35, 2865 (2002).CrossRefGoogle Scholar
30. Sen, A., Chemtech 16, 48 (1986).Google Scholar
31. Jiang, Z., Sanganeria, S., Sen, A., J. Polym. Sci., Part A: Polym. Chem. 32, 841 (1994).CrossRefGoogle Scholar
32. Pedersen, B.S., Scheibye, S., Nilsson, N.H., Lawesson, S.O., Bull. Soc. Chim. Belg. 87, 223 (1978).CrossRefGoogle Scholar
33. Pérez-Foullerat, D., Hild, S., Mücke, A., Rieger, B., Macromol. Chem. Phys. 205, 374 (2004).CrossRefGoogle Scholar
34. Cheng, C., Guironnet, D., Barborak, J., Brookhart, M., J. Am. Chem. Soc. 133, 9658 (2011).CrossRefGoogle Scholar
35. Green, M.J., Lucy, A.R., Lu, S.-Y., Paton, R.M., J. Chem. Soc., Chem. Commun. 2063 (1994).CrossRefGoogle Scholar
36. Lu, S.-Y., Paton, R.M., Green, M.J., Lucy, A.R., Eur. Polym. J. 32, 1285 (1996).CrossRefGoogle Scholar
37. Zhang, Y., Broekhuis, A.A., Stuart, M.C.A., Picchioni, F., J. Appl. Polym. Sci. 107, 262 (2008).CrossRefGoogle Scholar
38. Zhang, Y., Broekhuis, A.A., Picchioni, F., Macromolecules 42, 1906 (2009).CrossRefGoogle Scholar
39. Toncelli, C., De Reus, D.C., Picchioni, F., Broekhuis, A.A., Macromol. Chem. Phys. 213, 157 (2012).CrossRefGoogle Scholar