Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:46:16.910Z Has data issue: false hasContentIssue false

Frontiers in β″-Alumina Research

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Beta and β″-alumina are remarkable solid electrolytes whose study has been a principal theme in the field of solid state ionics ever since Yao and Kummer first reported the exceptionally high conductivity of sodium β-alumina in 1967. The unusual properties of sodium β-alumina stimulated widespread interest in both the science and technology of high conductivity solid electrolytes. Since Yao and Kummer's seminal work, many solid electrolytes have been explored, but interest in the β and β″-aluminas has endured, principally because of their virtually unique ability to undergo ion exchange in which the sodium ions are replaced by a wide variety of monovalent, divalent, and trivalent cations as well as various protonic species. The β and β″-aluminas thus are not single compounds, but a family of solid electrolytes with diverse properties and potential technological applications.

Kummer first pointed out the ion exchange properties of sodium β-alumina by showing that the sodium ions in the structure can be replaced by different monovalent cations, such as Li+, K+, as well as H(H2O)x+ and NH4+. More recent studies have shown that the ion exchange chemistry of sodium β″-alumina, is far richer than that of sodium β″-alumina. In fact, the sodium ion content of β″-alumina can be exchanged for virtually any +1, +2, or +3 cation in the periodic chart.

Type
Solid State Ionics
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yao, Y.F.Y. and Kummer, J.T., J. Inorg. Nucl. Chem. 29 (1967) p. 2453.Google Scholar
2.Kummer, J.T., Prog. in Solid State Chem. 7 (1972) p. 141.CrossRefGoogle Scholar
3.Dunn, B. and Farrington, G.C., Mater. Res. Bull. 15 (1980) p. 1773.CrossRefGoogle Scholar
4.Farrington, G.C. and Dunn, B., Solid State Ionics 7 (1982) p. 267.CrossRefGoogle Scholar
5.Farrington, G.C., Dunn, B., and Thomas, J.O., Appl. Phys. A32 (1983) p. 159.CrossRefGoogle Scholar
6.Yamaguchi, G., Elect. Chem. Soc. Japan 11 (1943) p. 260.Google Scholar
7.Théry, J. and Briançon, D., C.R. Acad. Sci. 254 (1962) p. 2782.Google Scholar
8.Weber, N. and Venero, A., presented at the 72nd annual meeting of the American Ceramic Society, May 1970.Google Scholar
9.Bettman, M. and Peters, C.R., J. Phys. Chem. 73 (1969) p. 1774.CrossRefGoogle Scholar
10.Briant, J.L. and Farrington, G.C., J. Solid State Chem. 33 (1980) p. 385.CrossRefGoogle Scholar
11.Dunn, B., Schwarz, B.B., Thomas, J.O., and Morgan, P.E.D., Solid State Ionics 28/30 (1988) p. 301.CrossRefGoogle Scholar
12.Roth, W.L., Reidinger, F., and LaPlaca, S., in Superionic Conductors, edited by Roth, W.L. and Mahan, G.D. (Plenum Press, New York, 1976).Google Scholar
13.Sattar, S., Ghosal, B., Underwood, M.L., Mertwoy, H., Saltzberg, M.A., Frydrych, W.S., Rohrer, G.S., and Farrington, G.C., J. Solid State Chem. 65 (1986) p. 231.CrossRefGoogle Scholar
14.De Nuzzio, J.D. and Farrington, G.C., J. Solid State Chem. 79 (1989) p. 65.CrossRefGoogle Scholar
15.Frase, K.G., PhD thesis, University of Pennsylvania, 1983.Google Scholar
16.Farrington, G.C. and Briant, J.L., in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J., and Shenoy, G. (North-Holland Publishing Co., Amsterdam, 1979) p. 395.Google ScholarPubMed
17.Colomban, Ph. and Novak, A., Solid State Ionics 5 (1981) p. 241.CrossRefGoogle Scholar
18.Thomas, J.O. and Farrington, G.C., Acta Crystallog. B 39 (1983) p. 227.CrossRefGoogle Scholar
19.Thomas, J.O., Alden, M., and McIntyre, G.J., Acta Crystallog. B 40 (1984) p. 208.CrossRefGoogle Scholar
20.Edstrom, K., Thomas, J.O., and Farrington, G.C., Solid State Ionics 28/30 (1988) p. 363.CrossRefGoogle Scholar
21.Saltzberg, M.A., Thomas, J.O., and Farrington, G.C., Chem. Mater. 1 (1989) p. 19.CrossRefGoogle Scholar
22.Thomas, J.O., to be submitted.Google Scholar
23.Sangster, M.J.L. and Dixon, M., Adv. Phys. 25 (1976) p. 247.CrossRefGoogle Scholar
24.Zendejas, M.A. and Thomas, J.O., Solid State Ionics 28/30 (1988) p. 46.CrossRefGoogle Scholar
25.Boilot, J.P., Collin, G., Colomban, Ph., and Comes, R., Phys. Rev. B 22 (1980) p. 5912.CrossRefGoogle Scholar
26.Seevers, R., DeNuzzio, J., Farrington, G.C., and Dunn, B., J. Solid State Chem. 50 (1983) p. 146.CrossRefGoogle Scholar
27.Davies, P.K., Petford, A., and O'Keeffe, M., Solid State Ionics 18/19 (1986) p. 624.CrossRefGoogle Scholar
28.Rohrer, G.S. and Farrington, G.C., Chem. Mater., in press.Google Scholar
29.Jansen, M., Alfrey, A.J., Stafsudd, O.M., Yang, D.L., Dunn, B., and Farrington, G.C., Opt. Lett. 9 (1984) p. 119.CrossRefGoogle Scholar
30.Alfrey, A.J., Stafsudd, O.M., Yang, D.L., Dunn, B., and Salmon, L., J. Chem. Phys. 88 (1988) p. 707.CrossRefGoogle Scholar
31.Saltzberg, M.A. and Farrington, G.C., submitted for publication.Google Scholar
32.Barrie, J.D., Dunn, B., Stafsudd, O.M., and Nelson, P., J. Lumin. 37 (1987) p. 303.CrossRefGoogle Scholar
33.Momoda, L.A., Barrie, J.D., and Dunn, B., Mater. Res. Bull., in press.Google Scholar
34.Barrie, J.D., Dunn, B., Hollingsworth, G., and Zink, J.I., J. Phys. Chem. 93 (1989) p. 3958.CrossRefGoogle Scholar
35.Hollingsworth, G., Barrie, J.D., Zink, J.I., and Dunn, B., J. Am. Chem. Soc. 110 (1988) p. 6569.CrossRefGoogle Scholar
36.Boyd, R.W., Gruneisen, M.T., Narum, P., Simkin, D.J., Dunn, B., and Yang, D.L., Opt. Lett. 11 (1986) p. 162.CrossRefGoogle Scholar
37.Adams, S.C., Dunn, B., and Stafsudd, O.M., Opt. Lett. 13 (1988) p. 1072.CrossRefGoogle Scholar