Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T01:42:53.829Z Has data issue: false hasContentIssue false

From Surface Materials to Surface Technologies

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The following article is an edited version of the Von Hippel Award address, given by recipient Gabor A. Somorjaiat the 1997 MRS Fall Meeting. Somorjai received the Materials Research Society's highest honor for “his extraordinary multidisciplinary contributions to the atomic-level understanding of materials surfaces and surface processes with technological importance in hetergeneous catalysis, corrosion, and tribology.”

Type
Special Features
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Berzelius, J., Jahres-Bericht über die Fortschritte der Physischen Wissenschaften, vol. 15 (Tübingen, 1836).Google Scholar
2.Thomas, J.M., Michael Faraday and the Royal Institution (IOP Publishing, Bristol, 1991).CrossRefGoogle Scholar
3.Csicsery, S.M., in Zeolite Chemistry and Catalysis, vol. 171, edited by Rabo, J. A. (American Chemical Society, Washington, DC, 1976).Google Scholar
4.O'Hanlon, J.F., A User's Guide to Vacuum Technique, 2nd ed. (John Wiley & Sons, New York, 1989).Google Scholar
5.Klauber, C., in Surface Analysis Methods in Materials Science, vol. 23, edited by O'Connor, D.J., Sexton, B.A., and Smart, R.S.C. (Springer-Verlag, Berlin, 1992).Google Scholar
6.de Boer, J.H., The Dynamical Character of Adsorption (Oxford University Press, New York, 1968).Google Scholar
7.Somorjai, G.A., Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, New York, 1994).Google Scholar
8.Weiss, W. and Somorjai, G.A., “The Preparation and Structure of 1–8 Monolayer Thick Epitaxial Iron Oxide Films Grown on Pt(111),” J. Vac. Sci. Technol. A 11 (4) 1993) p. 2138.CrossRefGoogle Scholar
9.Jacobs, P.W., Ribeiro, F.H., Wind, S.J., and Somorjai, G.A., “New Model Catalysts: Uniform Platinum Cluster Arrays Produced by Electron Beam Lithography,” Catal. Lett. 37 (3/4) (1996) p. 131.CrossRefGoogle Scholar
10.Cabrera, A.L., Spencer, N.D., Kozak, E., Davies, P.W., and Somorjai, G.A., Rev. Sci. Instrum. 53 (1982) p. 1888.CrossRefGoogle Scholar
11.Somorjai, G.A. and Rupprechter, G., in Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, edited by Froment, G.F. and Waugh, K.C., Studies in Surface Science and Catalysis, vol. 109 (Elsevier Science B.V., Amsterdam, 1997) p. 35.Google Scholar
12.Greg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity (Academic Press, New York, 1967).CrossRefGoogle Scholar
13.Hudson, J.B., Surface Science: An Introduction (Butterworth-Heinemann, Boston, 1992).Google Scholar
14.King, B.V., in Surface Analysis Methods in Materials Science, vol. 23, edited by O'Connor, D.J., Sexton, B.A., and Smart, R.S.C. (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
15.Ertl, G. and Küppers, J., Low Energy Electrons and Surface Chemistry (VCR Verlagsgesellschaft, Weinheim, 1985).Google Scholar
16.Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett. 56 (1986) p. 930.CrossRefGoogle Scholar
17.Hansma, P.K., Elings, V.B., Marti, O., and Bracker, C.E., Science 242 (1988) p. 157.CrossRefGoogle Scholar
18.Gasser, R.P.H., An Introduction to Chemisorption and Catalysis by Metals (Oxford University Press, New York, 1985).Google Scholar
19.Richardson, N.V. and Bradshaw, A.M., in Electron Spectroscopy: Theory, Techniques and Applications, vol. 4, edited by Brundle, C.R. and Baker, A.D. (Academic Press, New York, 1981).Google Scholar
20.Ibach, H. and Mills, D.L., Electron Energy Loss Spectroscopy and Surface Vibration (Academic Press, New York, 1982).Google Scholar
21.Prutton, M., Surface Physics (Oxford University Press, New York, 1975).Google Scholar
22.Woodruff, D.P. and Delchar, T.A., Modern Techniques of Surface Science, Cambridge Solid State Science Ser. (Cambridge University Press, New York, 1986).Google Scholar
23.Heald, S.M., in X-Ray Absorption, vol. 92, edited by Koningsberger, D.C. and Prins, R. (John Wiley & Sons, New York, 1988).Google Scholar
24.Somorjai, G.A. and Van Hove, M.A., in Structure and Bonding, edited by Dunitz, J.D.et al. (Springer-Verlag, Berlin, 1979).Google Scholar
25.Roberts, N.K., in Surface Analysis Methods in Materials Science, vol. 23, edited by O'Connor, D.J., Sexton, B.A., and Smart, R.S.C. (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
26.Willis, R.F., Lucas, A.A., and Mahan, G.D., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, vol. 2, edited King, D.A. and by Woodruff, D.P. (Elsevier, New York, 1983).Google Scholar
27.Somorjai, G.A. and Van Hove, M.A., in Investigations of Surfaces and Interfaces, Part B, vol. IXB, edited by Rossiter, B.W. and Baetzold, R.C. (John Wiley & Sons, New York, 1993).Google Scholar
28.Lechner, R.E. and Riekel, C., in Neutron Scattering and Muon Spin Rotation, vol. 101, edited by Höhler, G. (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
29.Barrie, P.J. and Klinowski, J., Prog. Nucl. Magn. Reson. 24 (1992) p. 91.CrossRefGoogle Scholar
30.Shen, Y.R., Nature 337 (1989) p. 519.CrossRefGoogle Scholar
31.Shen, Y.R., Annu. Rev. Phys. Chem. 40 (1989) p. 327.CrossRefGoogle Scholar
32.Richmond, G.L., Robinson, J.M., and Shannon, V.L., Prog. Surf. Sci. 28 (1988) p. 1.CrossRefGoogle Scholar
33.MacDonald, R.J. and King, B.V., in Surface Analysis Methods in Materials Science, vol. 23, edited by O'Connor, D.J., Sexton, B.A., and Smart, R.S.C. (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
34.Binnig, G. and Rohrer, H., Rev. Mod. Phys. 59 (1987) p. 615.CrossRefGoogle Scholar
35.Cowley, J.M., Prog. Surf. Sci. 21 (1986) p. 209.CrossRefGoogle Scholar
36.Thomas, G., Ultramicroscopy 20 (1986) p. 239.CrossRefGoogle Scholar
37.Yates, J.T., in Solid State Physics: Surfaces, vol. 22, edited by Park, R.L. and Lagally, M.G. (Academic Press, New York, 1985).Google Scholar
38.Madix, R.J., in Chemistry and Physics of Solid Surfaces, vol. 2, edited by Vanselow, R. (CRC Press, Boca Raton, FL, 1979).Google Scholar
39.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy (Perkin Elmer, Eden Prairie, MN, 1992).Google Scholar
40.Robinson, I.K. and Tweet, D.J., Rep. Prog. Phys. 55 (1992) p. 599.CrossRefGoogle Scholar
41.Barbieri, A., Weiss, W., Van Hove, M.A., and Somorjai, G.A., “Magnetite Fe3O4 (111): Surface Structure by LEED Crystallography and Energetics,” Surf. Sci. 302 (1994) p. 259.CrossRefGoogle Scholar
42.Lang, E., Müller, K., Heinz, K., Van Hove, M.A., Koestner, R.J., and Somorjai, G.A., “LEED Intensity Analysis of the (1 × 5) Reconstruction of Ir(100),” Surf. Sci. 127 (2) (1983) p. 347.CrossRefGoogle Scholar
43.Materer, N., Starke, U., Barbieri, A., Van Hove, M.A., and Somorjai, G.A., “Molecular Surface Structure of Ice(0001): Dynamical Low-Energy Electron Diffraction, Total-Energy Calculations and Molecular Dynamics Simulations,” Surf. Sci. 381 (1997) p. 190.CrossRefGoogle Scholar
44.Stanners, C.D., Du, Q., Chin, R.P., Cremer, P., Somorjai, G.A., and Shen, Y-R., “Polar Ordering at the Liquid–Vapor Interface of n-Alcohols (C1 – C8),” Chem. Phys. Lett. 232 (1995) p. 407.CrossRefGoogle Scholar
45.Kruse, N. and Gaussman, H., Surf. Sci. 266 (1992) p. 51.CrossRefGoogle Scholar
46.McIntyre, B.J., Salmeron, M., and Somorjai, G.A., “In Situ Scanning Tunneling Microscopy Study of Platinum (110) in a Reactor Cell at High Pressures and Temperatures,” J. Vac. Sci. Technol. A 11 (4) (1993) p. 1964.CrossRefGoogle Scholar
47.Somorjai, G.A., Chem. Rev. 96 (1996) p. 1223.CrossRefGoogle Scholar
48.Wander, A., Van Hove, M.A., and Somorjai, G.A., “Molecule-Induced Displacive Reconstruction in a Substrate Surface: Ethylidyne Adsorbed on Rh(111) Studied by Low-Energy-Electron Diffraction,” Phys. Rev. Lett. 67 (5) (1991) p. 626.CrossRefGoogle Scholar
49.Strongin, D.R., Carrazza, J., Bare, S.R., and Somorjai, G.A., J. Catal. 103 (1987) p. 213.CrossRefGoogle Scholar
50. “Molecular Surface Science of Organic Monolayers,” presented at 6th Int. Conf. on Surface and Colloid Science, June 5–10, 1988, Hakone, Japan; Pure & Appl. Chem. 60 (10) (1988) p. 1499.CrossRefGoogle Scholar
51.Wander, A., Held, G., Hwang, R.Q., Blackman, G.S., Xu, M.L., de Andres, P., Van Hove, M.A., and Somorjai, G.A., “A Diffuse LEED Study of the Adsorption Structure of Disordere d Benzen e on Pt(111),” Surf. Sci. 249 (1991) p. 21.CrossRefGoogle Scholar
52.Somorjai, G.A., “The Flexible Surface: New Techniques for Molecular Level Studies of Time Dependent Changes in Metal Surface Structure and Adsorbate Structure during Catalytic Reactions,” Proc. 8th Int. Symp. on Relations between Homogeneous and Heterogeneous Catalysis; J. Mol. Catal. A: Chemical 107 (1–3) (1996) p. 39.Google Scholar
53.Mate, C.M. and Kao, C-T., “Carbon Monoxide Induced Orderin g of Adsorbates on the Rh(111) Crystal Surface: Importance of Surface Dipole Moments,” Surf. Sci. 206 (1988) p. 145.CrossRefGoogle Scholar
54.Ohtani, H. and Van Hove, M.A., “The Structures of CO, NO and Benzene on Various Transition Metal Surfaces: Overview of LEED and HREELS Results,” ICSOS Proc. (1987); Appl. Surf. Sci. 33 (4) (1988) p. 254.Google Scholar
55.Barbieri, A., Van Hove, M.A., and Somorjai, G.A., “Benzene Coadsorbed with CO on Pd(111) and Rh(111): Detailed Molecular Distortions and Induced Substrate Relaxations,” Surf. Sci. 306 (3) (1994) p. 261.CrossRefGoogle Scholar
56.Barbieri, A., Jentz, D., Materer, N., Held, G., Dunphy, J., Ogletree, D.F., Sautet, P., Salmeron, M., Van Hove, M.A., and Somorjai, G.A., “Surface Crystallography of Re(0001)-(2 × 2)-S and Re(0001)-(2√3 × 2√3)R30°-6S: A Combined LEED and STM Study,” Surf. Sci. 312 (1994) p. 10.CrossRefGoogle Scholar
57.Yoon, H.A., Materer, N., Salmeron, M., Van Hove, M.A., and Somorjai, G.A., “Coverage-Dependent Structures of Sulfur on Pt(111) Studied by Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM),” Surf. Sci. 376 (1997) p. 254.CrossRefGoogle Scholar
58.Dunphy, J.C., Mclntyre, B.J., Gomez, J., Ogletree, D.F., Somorjai, G.A., and Salmeron, M.B., “Coadsorbate Induced Compression of Sulfur Overlayers on Re(0001) and Pt(111) by CO,” J. Chem. Phys. 100 (8) (1994) p. 6092.CrossRefGoogle Scholar
59.Mclntyre, B.J., Salmeron, M., and Somorjai, G.A., “An In Situ STM Determination of a Kinetic Pathway for the Coadsorbate-Induced Compression of Sulfur by CO on Pt(111),” Surf. Sci. 323 (3) (1995) p. 189.CrossRefGoogle Scholar
60.Batteas, J.D., Dunphy, J.C., Somorjai, G.A., and Salmeron, M., “Coadsorbate Induced Reconstruction of a Stepped Pt(111) Surface by Sulfur and CO: A Novel Surface Restructuring Mechanism Observed by Scanning Tunneling Microscopy,” Phys. Rev. Lett. 77 (3) (1996) p. 534.CrossRefGoogle Scholar
61.Somorjai, G.A., “Surface Science at High Pressures,” Z. Phys. Chem. 197 (1996) p. 1.CrossRefGoogle Scholar
62.Su, X., Cremer, P.S., Shen, Y.R., and Somorjai, G.A., “The Pressure Dependence (10−10–700 Torr) of the Vibrational Spectra of Adsorbed CO on Pt(111) Studied by Sum Frequency Generation,” Phys. Rev. Lett. 77 (181) (1996) p. 3858.CrossRefGoogle Scholar
63.Su, X.C., Jensen, J., Yang, M.X., Salmeron, M.B., Somorjai, G.A., “SFG and STM Studies of the Pt(111) crystal face at atmospheric CO and Oxygen Pressures: Preparation of Platinum Nanocluster Arrays,” Discuss. Faraday Soc. N105 (1996) p. 263.CrossRefGoogle Scholar
64.Cremer, P.S., Su, X., Shen, Y.R., and Somorjai, G.A., “Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation,” J. Am. Chem. Soc. 118 (12) (1996) p. 2942.CrossRefGoogle Scholar
65.Cremer, P.S., Su, X., Shen, Y.R., and Somorjai, G.A., “The Hydrogenation and Dehydrogenation of Propylene on Pt(111) Studied by Sum Frequency Generation from UHV to Atmospheric Pressure,” J. Phys. Chem. 100 (40) (1996) p. 16302.CrossRefGoogle Scholar
66.Cremer, P.S., Su, X., Shen, Y.R., and Somorjai, G.A., “The Hydrogenation and Dehydrogenation of Isobutene on Pt(111) Monitored by ir-Visible Sum Frequency Generation and Gas Chromatography,” Faraday Trans. 92 (23) (1996) p. 4717.CrossRefGoogle Scholar
67.Zhang, D., Shen, Y.R., and Somorjai, G.A., “Studies of Surface Structures and Compositions of Polyethylene and Polypropylene by ir + Visible Sum Frequency Vibrational Spectroscopy,” Chem. Phys. Lett. (1998).Google Scholar
68.Zhang, D., Ward, R.S., Shen, Y.R., and Somorjai, G.A., “An In Situ ir + Visible Sum Frequenc y Spectroscopic Study: Surface Structural Changes of a Polymer in Response to An Aqueous Environment,” J. Phys. Chem. 101 (2) (1997) p. 674.CrossRefGoogle Scholar