Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-20T18:12:36.523Z Has data issue: false hasContentIssue false

From Diatom Biomolecules to Bioinspired Syntheses of Silica- and Titania-Based Materials

Published online by Cambridge University Press:  31 January 2011

Nils Kröger
Affiliation:
Georgia Institute of Technology, Atlanta, GA, USA; tel. 404-894-4228; and e-mail [email protected].
Kenneth H. Sandhage
Affiliation:
Georgia Institute of Technology, Atlanta, GA, USA; tel. 404-894-6882; and e-mail [email protected].
Get access

Abstract

Amorphous silica is (next to CaCO3) the second most abundant biologically produced inorganic material. A certain group of photosynthetic microalgae, called diatoms, forms complex 3D silica architectures (frustules) containing regularly arranged nanoscale features (pores, channels, protuberances). Recently, biomolecules involved in diatom silica formation have been characterized, and first insights into their structure-function correlations have been obtained. This has spurred the development of synthetic (bio)polymers capable of directing the in vitro formation of silica and other inorganic materials from aqueous precursor solutions under mild conditions. Here we present a summary of current insight into the mechanism of silica formation by diatom biomolecules and provide examples of synthetic (bio)polymers for the formation of silica and titania materials with complex structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lowenstam, H.A., Weiner, S., On Biomineralization (Oxford University Press, Oxford, 1989).CrossRefGoogle Scholar
2.Mann, S., Biomineralization (Oxford University Press, Oxford, 2002).Google Scholar
3.Bäuerlein, E., Ed., Handbook of Biomineralization (Wiley-VCH, Weinheim, 2007).CrossRefGoogle Scholar
4.Mann, S., Ozin, G.A., Nature 382, 313 (1996).CrossRefGoogle Scholar
5.Gebeshuber, I.C., Nano Today 2, 30 (2007).CrossRefGoogle Scholar
6.Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., Sterrenburg, F.A.S., Trends Biotechnol. 27, 116 (2008).CrossRefGoogle Scholar
7.Losic, D., Mitchell, J.G., Voelcker, N.H., Adv. Mater. 21, 1 (2009).CrossRefGoogle Scholar
8.Round, F.E., Mann, D.G., Crawford, R.M., The Diatoms: Biology and Morphology of the Genera (Cambridge University Press, Cambridge, 1990).Google Scholar
9.Volcani, B.E., in Silicon and Siliceous Structures in Biological Systems, Volcani, B.E., Simpson, T.L., Eds. (Springer-Verlag, Berlin, 1981), pp. 157200.CrossRefGoogle Scholar
10.Swift, D.M., Wheeler, A.P., J. Phycol. 28, 202 (1992).CrossRefGoogle Scholar
11.Kröger, N., Poulsen, N., Annu. Rev. Genet. 42, 83 (2008).CrossRefGoogle Scholar
12.Sumper, M., Brunner, E., Chembiochem 9, 1187 (2008).CrossRefGoogle Scholar
13.Kröger, N., Lorenz, S., Brunner, E., Sumper, M., Science 298, 584 (2002).CrossRefGoogle Scholar
14.Poulsen, N., Sumper, M., Kröger, N., Proc. Nat. Acad. Sci. U.S.A. 100, 12073 (2003).CrossRefGoogle Scholar
15.Poulsen, N., Kröger, N., J. Biol. Chem. 279, 42993 (2004).CrossRefGoogle Scholar
16.Wenzl, S., Hett, R., Richthammer, P., Sumper, M., Angew. Chem. Int. Ed. 47, 1729 (2008).CrossRefGoogle Scholar
17.Kröger, N., Deutzmann, R., Sumper, M., Science 286, 1129 (1999).CrossRefGoogle Scholar
18.Kröger, N., Deutzmann, R., Sumper, M., J. Biol. Chem. 276, 26066 (2001).CrossRefGoogle Scholar
19.Wenzl, S., Deutzmann, R., Hett, R., Hochmuth, E., Sumper, M., Angew. Chem. Int. Ed. 43, 5933 (2004).CrossRefGoogle Scholar
20.Sumper, M., Hett, R., Lehmann, G., Wenzl, S., Angew. Chem. Int. Ed. 46, 8405 (2007).CrossRefGoogle Scholar
21.Sumper, M., Lorenz, S., Brunner, E., Angew. Chem. Int. Ed. 42, 5192 (2003).CrossRefGoogle Scholar
22.Brunner, E., Lutz, K., Sumper, M., Phys. Chem. Chem. Phys. 6, 854 (2004).CrossRefGoogle Scholar
23.Patwardhan, S.V., Clarson, S.J., Perry, C.C., Chem. Commun. 1113 (2005).CrossRefGoogle Scholar
24.Behrens, P., Jahns, M., Menzel, H., in Handbook of Biomineralization, Behrens, P., Baeuerlein, E., Eds. (Wiley-VCH, Weinheim, 2007), pp. 318.Google Scholar
25.Gröger, C., Lutz, K., Brunner, E., Cell Biochem. Biophys. 50, 23 (2008).CrossRefGoogle Scholar
26.Mizutani, T., Nagase, H., Fujiwara, N., Ogoshi, H., Bull. Chem. Soc. Jpn. 71, 2017 (1998).CrossRefGoogle Scholar
27.Vrieling, E.G., Sun, Q.Y., Beelen, T.P.M., Hazelaar, S., Gieskes, W.W.C., van Santen, R.A., Sommerdijk, N.A.J.M., J. Nanosci. Nanotechnol. 5, 68 (2005).CrossRefGoogle Scholar
28.Dickerson, M.B., Sandhage, K.H., Naik, R.R., Chem. Rev. 108, 4935 (2008).CrossRefGoogle Scholar
29.Zhang, Y., Wu, H., Li, J., Li, L., Jiang, Y., Jiang, Y., Jiang, Z., Chem. Mater. 20, 1041 (2008).CrossRefGoogle Scholar
30.Kim, D.J., Lee, K.B., Chi, Y.S., Kim, W.J., Paik, H.J., Choi, I.S., Langmuir 20, 7904 (2004).CrossRefGoogle Scholar
31.Sewell, S.L., Rudledge, R.D., Wright, D.W., Dalton Trans. 3857 (2008).CrossRefGoogle Scholar
32.Dickerson, M.B., Jones, S.E., Cai, Y., Ahmad, G., Naik, R.R., Kröger, N., Sandhage, K.H., Chem. Mater. 20, 1578 (2008).CrossRefGoogle Scholar
33.Kröger, N., Dickerson, M.B., Ahmad, G., Cai, Y., Haluska, M.S., Sandhage, K.H., Poulsen, N., Sheppard, V.C., Angew. Chem. Int. Ed. 45, 7239 (2006).CrossRefGoogle Scholar
34.Belton, D., Patwardhan, S.V., Annenkov, V.V., Danilovtseva, E.N., Perry, C.C., Proc. Nat. Acad. Sci. U.S.A. 105, 5963 (2008).CrossRefGoogle Scholar
35.Kröger, N., Sumper, M., in Biomineralization, Bäuerlein, E., Ed. (Wiley-VCH, Weinheim, 2000), pp. 151170.Google Scholar
36.Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
37.Rodriguez, F., Glawe, D.D., Naik, R.R., Hallinan, K.P., Stone, M.O., Biomacromolecules 5, 261 (2004).CrossRefGoogle Scholar
38.Pender, M.J., Sowards, L.A., Hartgerink, J.D., Stone, M.O., Naik, R.R., Nano Lett. 6, 40 (2006).CrossRefGoogle Scholar
39.Foo, C.W.P., Patwardhan, S.V., Belton, D.J., Kitchel, B., Anastasiades, D., Huang, J., Naik, R.R., Perry, C.C., Kaplan, D.L., Proc. Nat. Acad. Sci. U.S.A. 103, 9428 (2006).Google Scholar
40.Marner, W. II, Shaikh, A.S., Muller, S.J., Keasling, J.D., Biomacromolecules 9, 1 (2008).CrossRefGoogle Scholar
41.Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J., Naik, R.R., J. Am. Chem. Soc. 127, 12577 (2005).CrossRefGoogle Scholar
42.Sumper, M., Angew. Chem. Int. Ed. 43, 2251 (2004).CrossRefGoogle Scholar
43.Gratson, G.M., Xu, M., Lewis, J.A., Nature 428, 386 (2004).CrossRefGoogle Scholar
44.Xu, M., Gratson, G.M., Duoss, E.B., Shepherd, R.F., Lewis, J.A., Soft Matter 2, 205 (2006).CrossRefGoogle Scholar
45.Cole, K.E., Ortiz, A.N., Schoonen, M.A., Valentine, A.M., Chem. Mater. 18, 4592 (2006).CrossRefGoogle Scholar
46.Brutchey, R.L., Morse, D.E., Chem. Rev. 108, 4915 (2008).CrossRefGoogle Scholar
47.Müller, W.E., Wang, X., Cui, F.Z., Jochum, K.P., Tremel, W., Bill, J., Schröder, H.C., Natalio, F., Schlossmacher, U., Wiens, M., Appl. Microbiol. Biotechnol. 83, 397 (2009).CrossRefGoogle Scholar
48.Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., Matsunaga, T., J. R. Soc. Interface 5, 977 (2008).CrossRefGoogle Scholar
49.Poulsen, N., Berne, C., Spain, J., Kröger, N., Angew. Chem. Int. Ed. 46, 1843 (2007).CrossRefGoogle Scholar