Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:13:44.406Z Has data issue: false hasContentIssue false

Focused Ion Beam Microscopy and Micromachining

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fairly recent availability of commercial focused ion beam (FIB) microscopes has led to rapid development of their applications for materials science. FIB instruments have both imaging and micromachining capabilities at the nanometer–micrometer scale; thus, a broad range of fundamental studies and technological applications have been enhanced or made possible with FIB technology. This introductory article covers the basic FIB instrument and the fundamentals of ion–solid interactions that lead to the many unique FIB capabilities as well as some of the unwanted artifacts associated with FIB instruments. The four topical articles following this introduction give overviews of specific applications of the FIB in materials science, focusing on its particular strengths as a tool for characterization and transmission electron microscopy sample preparation, as well as its potential for ion beam fabrication and prototyping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

References

1.Mueller, E.W., Tsong, T.T., Field Ion Microscopy Principles and Applications (American Elsevier, New York, 1969).CrossRefGoogle Scholar
2.Krohn, V.E., Ringo, G.R., Appl. Phys. Lett. 27, 479 (1975).CrossRefGoogle Scholar
3.Seliger, R.L., Ward, J.W., Wang, V., Kubena, R.L., Appl. Phys. Lett. 34, 310 (1979).CrossRefGoogle Scholar
4.Swanson, L.W., Nucl. Instrum. Methods Phys. Res., Sect. 218, 347 (1983).CrossRefGoogle Scholar
5. For example, FEI Co., Carl Zeiss Inc., Seiko Instruments Inc., Hitachi Inc., JEOL Ltd., Orsay Physics.Google Scholar
6.Benninghoven, A., Rüdenauer, F.G., Werner, H.W., Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends (John Wiley, New York, 1987).Google Scholar
7.Prewitt, P.D., Mair, G.L.R., Focused Ion Beams from Liquid Metal Ion Sources (John Wiley, New York, 1987) p. 291.Google Scholar
8.Orloff, J., Rev. Sci. Instrum. 64, 1105 (1993).CrossRefGoogle Scholar
9.Orloff, J., Swanson, L.W., Utlaut, M., J. Vac. Sci. Technol., B 14, 3759 (1996).CrossRefGoogle Scholar
10.Nastasi, M., Mayer, J.W., Hirvonen, J.K., Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 1996).CrossRefGoogle Scholar
11.Chason, E. et al., Appl. Phys. Rev. 81, 6514 (1997).CrossRefGoogle Scholar
12.Williams, J.S., Poate, J.M., Ion Implantation and Beam Processing (Academic, Sydney, 1984).Google Scholar
13.Orloff, J., Utlaut, M., Swanson, L., High Resolution Focused Ion Beams: FIB and its Applications (Kluwer Academic, Dordrecht, 2002).Google Scholar
14.Giannuzzi, L.A., Stevie, F.A., Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice (Springer, New York, 2005).CrossRefGoogle Scholar
15.Melngailis, J., J. Vac. Sci. Technol., B 5, 469 (1987).CrossRefGoogle Scholar
16.Sigmond, P., Phys. Rev. 184, 383 (1969).CrossRefGoogle Scholar
17.Sigmond, P., J. Mater. Sci., 8, 1545 (1973).CrossRefGoogle Scholar
18.Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping Range of Ions in Solids (Pergamon Press, New York, 1984). The SRIM code is available online at www.srim.org (accessed February 2007).Google Scholar
19.Lehrer, C., Frey, L., Petersen, S., Ryssel, H., J. Vac. Sci. Technol., B 19, 2533 (2001).CrossRefGoogle Scholar
20.Frey, L., Lehrer, C., Ryssel, H., Appl. Phys. A 76, 1017 (2003).CrossRefGoogle Scholar
21.Xu, X., Della Ratta, A.D., Sosonkina, J., Melngailis, J., J. Vac. Sci. Technol., B 10, 2675 (1992).CrossRefGoogle Scholar
22.Santamore, D., Edinger, K., Orloff, J., Melngailis, J., J. Vac. Sci. Technol., B 15, 2346 (1997).CrossRefGoogle Scholar
23.Kempshall, B.W. et al., J. Vac. Sci. Technol., B 19, 749 (2001).CrossRefGoogle Scholar
24.Prenitzer, B.I. et al., Metall. Trans. A 29, 2399 (1998).CrossRefGoogle Scholar
25.Ishitani, T., Tsuboi, H., Yaguchi, T., Koike, H., J. Electron Microsc. 43, 322 (1994).Google Scholar
26.Chason, E., Aziz, M.J., Scripta Mater. 49, 953 (2003).CrossRefGoogle Scholar
27.Qian, H.X. et al., Appl. Surf. Sci. 240, 140 (2005).CrossRefGoogle Scholar
28.Chen, H.H. et al., Science 310, 294 (2005).CrossRefGoogle Scholar
29.Castro, M., Cuerno, R., Vázquez, L., Gago, R., Phys. Rev. Lett. 94, 016102 (2005).CrossRefGoogle Scholar
30.Volkert, C.A., Lilleodden, E.T., Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
31.Marien, J., Plitzko, J., Spolenak, R., Keller, R., Mayer, J., J. Microscopy 194, 71 (1999).CrossRefGoogle Scholar
32.Sigle, W., private communication (2002).Google Scholar
33.Volkert, C.A., Busch, S., Heiland, B., Dehm, G., J. Microscopy 214, 208 (2004).CrossRefGoogle ScholarPubMed
34.Park, C.M., Bain, J.A., J. Appl. Phys. 91, 6380 (2002).Google Scholar
35.Ishitani, T., Kaga, H., J. Electron Microsc. 44, 331 (1995).Google Scholar
36.Carlslaw, H.S., Jaeger, J.C., Conduction of Heat in Solids (Oxford University Press, Oxford, UK, ed. 2, 1959) p. 264.Google Scholar
37.Ishitani, T., Madokoro, Y., Nakagawa, M., Ohya, K., J. Electron Microsc. 51, 207 (2002).CrossRefGoogle Scholar