Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:23:29.449Z Has data issue: false hasContentIssue false

Focused Ion Beam Micro- and Nanoengineering

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article discusses applications of focused ion beam micro- and nanofabrication. Emphasis is placed on illustrating the versatility of focused ion beam and dual-platform systems and how they complement conventional processing techniques. The article is divided into four parts: maskless milling, ion beam lithography, ion implantation, and techniques such as in situ micromanipulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abramo, M.T., Hahn, L.L., Microelectron. Reliability 11, 1775 (1996).CrossRefGoogle Scholar
2.Pan, G. et al., J. Magn. Magn. Mater. 202, 583 (1999).CrossRefGoogle Scholar
3.Lacour, F. et al., Opt. Lett. 27 (8), 1421 (2005).Google Scholar
4.Kumarir, L., Subramanyam, S.V., Bull. Mater. Sci. 27 (3), 289 (2004).CrossRefGoogle Scholar
5.Sharma, S.N., Shivaprasad, S.M., Kohli, S., Rastogi, R., Pure Appl. Chem. 74 (9), 1739 (2002).CrossRefGoogle Scholar
6.Schiappelli, F. et al., Microelectron. Eng. 73, 397 (2004).CrossRefGoogle Scholar
7.Leung, C.W., Bell, C., Burnel, G., Blamire, M.G., Phys. Rev. B 72, 212409 (2005).CrossRefGoogle Scholar
8.Lohmeyer, H. et al., J. Eur. Phys. B 48, 291 (2005).CrossRefGoogle Scholar
9.Kim, S.-J. et al., Physica C 412, 1401 (2004).CrossRefGoogle Scholar
10.Allwood, D.A. et al., Science 296, 2003 (2002).CrossRefGoogle Scholar
11.Toporov, A. Yu, Langford, R.M., Petford-Long, A.K., Appl. Phys. Lett. 77, 3065 (2000).CrossRefGoogle Scholar
12.Enkrich, C. et al., Adv. Mater. 17, 2547 (2005).CrossRefGoogle Scholar
13.Lugstein, A. et al., Appl. Phys. Lett. 81 (2), 349 (2002).CrossRefGoogle Scholar
14.An, K.H. et al., Appl. Phys. Lett. 89, 111117 (2006).CrossRefGoogle Scholar
15.Ximen, H., Russell, P.E., Ultramicroscopy 42, 1526 (1996).Google Scholar
16.Liu, Z., Dan, Y., Jinjun, Q., Wu, Y., J. Appl. Phys. 91 (10), 918843 (2002).Google Scholar
17.Gao, L. et al., IEEE Trans. Magn. 40 (4), 2194 (2004).CrossRefGoogle Scholar
18.Nellen, P.N., Callegari, V., Sennhauser, U., Chimia 60 (11), 735 (2006).CrossRefGoogle Scholar
19.Reyntjens, S., Puers, R., J. Micromech. Microeng. 10, 181 (2000).CrossRefGoogle Scholar
20.Motz, C., Schoberl, T., Pippan, R., Acta Mater. 53, (2005) p. 4269.CrossRefGoogle Scholar
21.McCarthy, J., Pei, Z., Becker, M., Atteridge, D., Thin Solid Films 358, 146 (2000).CrossRefGoogle Scholar
22.Uchic, M.D., Dimiduk, D.M., Nix, W.D., Science 305, 986 (2004).CrossRefGoogle Scholar
23.Trtik, P., Reeves, C.M., Bartos, P.J.M., Mater. Struct. 33, 189 (2000).CrossRefGoogle Scholar
24.Volkert, C.A., Lilleodden, E.T., Philos. Mag. 86 (33), 5567 (2006).CrossRefGoogle Scholar
25.Maio, D.I., Roberts, S.G., J. Mater. Res. 20 (2), 299 (2005).CrossRefGoogle Scholar
26.Cross, G., O'Conner, B., Langford, R.M., Pethica, J., Mater Res. Soc. Symp. Proc. 841, R1.6.1 (Warrendale, PA, 2005).Google Scholar
27.Kang, K.J., Darzens, S., Choi, G.S., J. Eng. Mater. Technol. 126, 457 (2004).CrossRefGoogle Scholar
28.Jud, P., Nellen, P.M., Sennhauser, U., Adv. Eng. Mater. 7 (5), 384 (May 2005).CrossRefGoogle Scholar
29.Nellen, P.M., Callegari, V., Brönnimann, R., Microelectron. Eng. 83, 1805 (2006).CrossRefGoogle Scholar
30.Adams, D.P., Vasile, M.J., Mayer, T.M., J. Vac. Sci. Technol. B 24 (4), 1766 (2006).CrossRefGoogle Scholar
31.Vasile, M.J., Zhang, W., J. Vac. Sci. Technol. B 17 (6), 3085 (1998).CrossRefGoogle Scholar
32.Adams, D.P., Mayer, T.M., Vasile, M.J., Archuelta, K., Appl. Surf. Sci. 252, 2432 (2006).CrossRefGoogle Scholar
33.Platzgummer, E. et al., Microelectron. Eng. 83, 936 (2006).CrossRefGoogle Scholar
34.Nellen, P.M. et al., in Mater Res. Soc. Symp. Proc. 983E (2006) paper no. 0960-N10–03-LL06–03.Google Scholar
35.Ziegler, J.F., Biersack, J.P., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
36.Mendenhall, M.H., Weller, R.A., Nucl. Instrum. Methods Phys. Res. 227, 420 (2005).CrossRefGoogle Scholar
37.Rusponi, S., Costantini, G., Buatier de Mongeot, F., Valbusa, U., Appl. Phys. Lett. 75 (21), 3318 (1999).CrossRefGoogle Scholar
38.Hung, N.P., Fu, Y.Q., Ali, M.Y., J. Mater. Process. Technol. 5763, 1 (2002).Google Scholar
39.Minor, A.M., Radmilovic, V.R., Stach, E.A., Schenkel, T., Microsc. Microanal. 10, 1118 (2004).CrossRefGoogle Scholar
40.Langford, R.M., Wang, T.-X., J. Nanosci. Nanotechnol. 6 (9), 343 (2006).Google Scholar
41.Nilsson, J., Lee, J.R.I., Ratto, T.V., Letant, S.E., Adv. Mater. 18, 427 (2006).CrossRefGoogle Scholar
42.Wei, H.-X., Langford, R.M., Han, X.-F., Coey, J.M.D., Appl. Phys. Lett., 99 (8), 501 (2006).Google Scholar
43.Biance, A.-L. et al., Microelectron. Eng. 83, 1474 (2006).CrossRefGoogle Scholar
44.Nagase, T., Gamo, K., Kubota, T., Mashiko, S., Micro. Elec. 78, 253 (2005).Google Scholar
45.Hodzic, V., Orloff, J., Davis, C.C., J. Lightwave Technology 6 (22), 209 (2004).Google Scholar
46.Reiner, J., Nellen, P., Sennhauser, U., Microelectron. Reliability 44 (9), 1583 (2004).Google Scholar
47.Colla, T.J., Urbassek, H.M., Phys. Rev. B 6310 (10), 2002 (2001).Google Scholar
48.Müller, U., Sennhauser, U., Hernández-Ramírez, F., Appl. Surf. Sci. (2006) submitted.Google Scholar
49.Gierak, J., Septier, A., Vieu, C., Nucl. Instrum. Methods Phys. Res. Sect. B 127, 893 (1997).Google Scholar
50.Kubena, R.L. et al., J. Vac. Sci. Technol. B 9, 3079 (1991).CrossRefGoogle Scholar
51.Taniguchi, J., Koga, K., Koga, Y., Miyamoto, I., Microelectron. Eng. 83, 940 (2006).CrossRefGoogle Scholar
52.Langford, R.M., Petford-Long, A.K., Rommeswinkle, M., Egelkamp, S., Mater. Sci. Technol. 18, 743 (2002).CrossRefGoogle Scholar
53.Gilmartin, S.F. et al., Microelectron. Eng. 83, 823 (2006).CrossRefGoogle Scholar
54.Liu, C.Y., Datta, A., Wang, Y.L., Appl. Phys. Lett. 78 (1), 120 (2001).CrossRefGoogle Scholar
55.Perez, A. et al., New J. Phys. 4, 76.1 (2002).CrossRefGoogle Scholar
56.Rastei, M.V. et al., J. Magn. Magn. Mater. 286, 10 (2005).CrossRefGoogle Scholar
57.Vandervelde, T.E. et al., J. Vac. Sci. Technol. A, 24 (2), 375 (2006).CrossRefGoogle Scholar
58.Sun, Y.T. et al., Appl. Phys. Lett. 79 (12), 1185 (2001).Google Scholar
59.Callegari, V., Nellen, P.M., Phys. Status Solidi A (2006) submitted.Google Scholar
60.Huang, Y.Z., Appl. Phys. Lett. 88, 103104 (2004).CrossRefGoogle Scholar
61.Lugstein, A., Bernardi, J., Tomastok, C., Bertagnolli, E., Appl. Phys. Lett. 88, 163114 (2006).CrossRefGoogle Scholar
62.Nitta, N., Taniwaki, M., Nucl. Instrum. Methods Phys. Res. Sect. B 24, 234 (2004).Google Scholar
63.Wieck, A.D., Ploog, K., Appl. Phys. Lett., 56, 928 (1990).CrossRefGoogle Scholar
64.Kim, T.W. et al., Solid State Commun. 115, 77 (2000).CrossRefGoogle Scholar
65.Tseng, W.F., Monk, D.H., Mater. Lett. 40, 235 (1999).CrossRefGoogle Scholar
66.Nakata, S., Phys. Rev. B 46, 13326 (1992).CrossRefGoogle Scholar
67.Shen, C. et al., IEEE Trans. Electron Dev. 45 (2), 453 (1998).CrossRefGoogle Scholar
68.Steckl, A.J. et al., J. Vac. Sci. Technol. B 13 (6), 2570 (1995).CrossRefGoogle Scholar
69.Naghski, D.H., Boyd, J.T., Jackson, H.E., Steckl, A.J., Opt. Commun. 150 (6), 97 (1998).CrossRefGoogle Scholar
70.Goto, T. et al. Appl. Sur. Sci. 159, 277 (2000).CrossRefGoogle Scholar
71.Thompson, J.H. et al., J. Appl. Phys. 74, 4375 (2005).CrossRefGoogle Scholar
72. S.1. Woods et al., Appl. Phys. Lett. 81, 1267 (2002).CrossRefGoogle Scholar
73.Chappert, C. et al., Science 280, 1919 (1998).CrossRefGoogle Scholar
74.Owen, N., Yuen, H.-Y., Petford-Long, A., IEEE Trans. On Magn., 38 (5), 202 (2002).CrossRefGoogle Scholar
75.Fassbender, J. et al., Phys. Status Solidi A 189, 439 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
76.Warin, P. et al., J. Appl. Phys. 90, 3850 (2001).CrossRefGoogle Scholar
77.Vieu, C. et al., Phys. Rev. Lett. 81, 5656 (1998).Google Scholar
78.McGrouther, D., Chapman, J.N., Appl. Phys. Lett. 87, 22507 (2005).CrossRefGoogle Scholar
79.Langford, R.M., Wang, T.-X., Heidelberg, A., Sheridan, J.G., J. Vac. Sci. Technol. B 24, 2306 (2006).CrossRefGoogle Scholar
80.Hall, A. et al., Appl. Phys. Lett. 82, 2506 (2003).CrossRefGoogle Scholar
81.Deng, Z. et al., Appl. Phys. Lett. 88, 23119 (2006).CrossRefGoogle Scholar
82.Wei, H.X. et al., J. Magn. Magn. Mater. 303 (2), 208 (August 2006).CrossRefGoogle Scholar
83.Shigeto, K. et al., Microelectron. Eng. 83, 1471 (2006).CrossRefGoogle Scholar
84.Bischoff, L., Schmidt, B., Ch. Akhmadaliev, Mucklich, A., Microelectron. Eng. 83, 800 (2006).CrossRefGoogle Scholar
85.Reuter, D. et al., Mater. Sci. Eng. 23, 456 (2001).Google Scholar
86.Hanssen, J.L., Dakin, E.A., McClelland, J.J., J. Vac. Sci. Technol. B 24 (6), 2907 (2006).CrossRefGoogle Scholar