Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T19:55:23.400Z Has data issue: false hasContentIssue false

Focused ion beam and scanning electron microscopy for 3D materials characterization

Published online by Cambridge University Press:  09 April 2014

Paul G. Kotula
Affiliation:
Sandia National Laboratories; [email protected]
Gregory S. Rohrer
Affiliation:
Carnegie Mellon University; [email protected]
Michael P. Marsh
Affiliation:
Marsh Imaging and Visualization; [email protected]
Get access

Abstract

In this article, we review focused ion beam serial sectioning microscopy paired with analytical techniques, such as electron backscatter diffraction or x-ray energy-dispersive spectrometry, to study materials chemistry and structure in three dimensions. These three-dimensional microanalytical approaches have been greatly extended due to advances in software for both microscope control and data interpretation. Samples imaged with these techniques reveal structural features of materials that can be quantitatively characterized with rich chemical and crystallographic detail. We review these technological advances and the application areas that are benefitting. We also consider the challenges that remain for data collection, data processing, and visualization, which collectively limit the scale of these investigations. Further, we discuss recent innovations in quantitative analyses and numerical modeling that are being applied to microstructures illuminated by these techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holzer, L., Cantoni, M., Review of FIB Tomography in Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford University Press, Oxford, UK, 2012), chap. 11.Google Scholar
Rowenhorst, D.J., Lewis, A.C., Spanos, G., Acta Mater. 58, 5511 (2010).Google Scholar
Saylor, D.M., Morawiec, A., Rohrer, G.S., Acta Mater. 51, 3663 (2003).CrossRefGoogle Scholar
Beladi, H., Rohrer, G.S., Acta Mater. 61, 1404 (2013).Google Scholar
Dillon, S.J., Helmick, L., Miller, H.M., Wilson, L., Gemman, R., Petrova, R.V., Barmak, K., Rohrer, G.S., Salvador, P.A., J. Am. Ceram. Soc. 94, 4045 (2011).Google Scholar
Dillon, S.J., Rohrer, G.S., J. Am. Ceram. Soc. 92, 1580 (2009).Google Scholar
Groeber, M.A., Haley, B.K., Uchic, M.D., Dimiduk, D.M., Ghosh, S., Mater. Charact. 57, 259 (2006).Google Scholar
Khorashadizadeh, A., Raabe, D., Winning, M., Pippan, R., Adv. Eng. Mater. 13, 237 (2011).CrossRefGoogle Scholar
Li, J., Dillon, S.J., Rohrer, G.S., Acta Mater. 57, 4304 (2009).Google Scholar
Rohrer, G.S., Li, J., Lee, S., Rollett, A.D., Groeber, M., Uchic, M.D., Mater. Sci. Technol. 26, 661 (2010).Google Scholar
FEI Visualization Sciences Group, Avizo (2013); http://www.vsg3d.com/avizo/overview.Google Scholar
Groeber, M.A., Jackson, M.A., Integr. Mater. Manuf. Innov. in press (2014).Google Scholar
ParaView, Kitware (2013); http://www.paraview.org/.Google Scholar
Rohrer, G.S., J. Am. Ceram. Soc. 94, 633 (2011).Google Scholar
Rohrer, G.S., Saylor, D.M., El Dasher, B., Adams, B.L., Rollett, A.D., Wynblatt, P., Z. Metallkd. 95, 197 (2004).Google Scholar
Lee, S.-B., Key, T.S., Liang, Z., García, R.E., Wang, S., Tricoche, X., Rohrer, G.S., Saito, Y., Ito, C., Tani, T., J. Eur. Ceram. Soc. 33, 313 (2013).Google Scholar
Rollett, A., Lebensohn, R.A., Groeber, M., Choi, Y., Li, J., Rohrer, G.S., Model. Simul. Mater. Sci. Eng. 18, 074005 (2010).Google Scholar
Ghosh, S., Bhandari, Y., Groeber, M., Comput. Aided Des. 40 (3), 293 (2008).CrossRefGoogle Scholar
Lewis, A.C., Qidwai, S.M., Jackson, M., Geltmacher, A.B., JOM 63 (3), 35 (2011).CrossRefGoogle Scholar
Marschallinger, R., Scanning 20, 65 (1998).CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R., Michael, J.R., Microsc. Microanal. 9 (Suppl. 2), 1004 (2003).CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R., Michael, J.R., Microsc. Microanal. 10 (Suppl. 2), 1132 (2004).CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R., Michael, J.R., Microsc. Microanal. 12, 36 (2006).Google Scholar
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M., Mulders, H., Ultramicroscopy 107, 587 (2007).Google Scholar
Schaffer, M., Wagner, J., Microchim. Acta 161, 421 (2008).Google Scholar
Kotula, P.G., Keenan, M.R., Michael, J.R., Microsc. Microanal. 9, 1 (2003).Google Scholar
Kotula, P.G., Van Benthem, M.H., Sorensen, N.R., IEEE Statistical Signal Processing Workshop (SSP) (2012), pp. 672–675.Google Scholar
Iwai, H., Shikazonob, N., Matsuic, T., Teshimab, H., Kishimotoa, M., Kishidac, R., Hayashia, D., Matsuzakib, K., Kannob, D., Saitoa, M., Muroyamac, H., Eguchic, K., Kasagib, N., Yoshida, H., J. Power Sources 195 (4), 955 (2010).Google Scholar
Smith, N.S., Skoczylas, W.P., Kellogg, S.M., Kinion, D.E., Tesch, P.P., Sutherland, O., Aanesland, A., Boswell, R.W., J. Vac. Sci. Technol. B 24, 2902 (2006).Google Scholar
Doyle, B.L., Walsh, D.S., Kotula, P.G., Rossi, P., Schulein, T., Rohde, M., X-Ray Spectrom. 34 (4), 279 (2005).Google Scholar
Kotula, P.G., Michael, J.R., Rohde, M., Microsc. Microanal. 14 (Suppl. 2) 116 (2008).Google Scholar
Shushakova, V., Fuller, E.R. Jr., Heidelbach, F., Mainprice, D., Siegesmund, S., Environ. Earth Sci. 69 (4), 1281 (2013).CrossRefGoogle Scholar
Holbrook, R.D., Davis, J.M., Scott, K.C.K., Szakal, C., J. Microsc. 246, 143 (2012).Google Scholar
Scott, K., Ritchie, N.W.M., J. Microsc. 233, 331 (2009).Google Scholar