Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T14:05:57.925Z Has data issue: false hasContentIssue false

Fluorocarbons and Fluorosurfactants for In Vivo Oxygen Transport (Blood Substitutes), Imaging, and Drug Delivery

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The development of biomaterials to treat, repair, or reconstruct the human body is an increasingly important component of materials research. Collaboration between materials researchers and their industrial and clinical partners is essential for the development of this complex field. To demonstrate the importance of these interactions, two articles in this issue focus on advances in biomaterials relating to the use of colloidal systems for transport, drug delivery, and other medical applications. These articles were coordinated by Dominique Muster (Université Louis Pasteur, Strasbourg) and Franz Burny (Hôpital Erasme, Brussels). The following is the first of these two articles.

A large variety of colloidal Systems involving highly fluorinated components have been prepared and investigated in recent years. These fluorinated Systems comprise diverse ty pes of emulsions (e.g., direct, reverse, and multiple emulsions; microemulsions; gel emulsions; waterless emulsions) with a fluorocarbon phase (and often a fluorinated Surfactant), and a ränge of self-assemblies (vesicles, tubules, helices, ribbons, etc.) made from fluorinated amphiphiles. Fluorinated Langmuir films and fluorinated black lipid membranes (BLMs) also have been investigated.

Research in this area was driven by the potential applications of such materials in medicine and biology. Fluorocarbon-based products are being developed as injectable oxygen carriers (“blood Substitutes”), media for liquid Ventilation, drug delivery Systems, and contrast agents for ultrasound imaging. One such agent has recently been approved for use in Europe and the United States. Several more products are in an advanced stage of clinical evaluation, and others are in various stages of preclinical development. From a more fundamental Standpoint, these materials are being investigated for assessing and understanding the impact that fluorinated components have on the formation, stability, structure, and properties of colloida l Systems in comparison with their hydrocarbon counterparts. The attention given to fluorinated colloids prompted the synthesis of numerous new families of fluorinated amphiphiles, which were to become components of such colloids.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Riess, J.G., Coll. Surf. 84 (1994) p. 33.CrossRefGoogle Scholar
2.Krafft, M.P. and Riess, J.G., Biochimie 80 (1998) p. 489.CrossRefGoogle Scholar
3.Krafft, M.P., Riess, J.G., and Weers, J.G., “The Design and Engineering of Oxygen-Delivering Fluorocarbon Emulsions,” in Submicronic Emulsions in Drug Targeting and Delivery, edited by Benita, S. (Harwood Academic Publ., Amsterdam, 1998) p. 235.Google Scholar
4.Banks, R.E., Smart, B.E., and Tatlow, J.C., Organofluorine Chemistry, Principles and Commercial Applications (Plenum Press, New York, 1994).CrossRefGoogle Scholar
5.Shaffer, T.H., Wolfson, M.R., Greenspan, J.S., Rubenstein, S.D., and Stern, R.G., Art. Cells, Blood Subst., Immob. Biotech. 22 (1994) p. 315.CrossRefGoogle Scholar
6.Leach, C.L., Greenspan, J.S., Rubenstein, D., Shaffer, T.H., Wolfson, M.R., Jackson, J.C., DeLemos, R., and Fuhrman, B.P., New Engl. J. Med. 335 (1996) p. 761.CrossRefGoogle Scholar
7.Weis, C.M., Wolfson, M.R., and Shaffer, T.H., Ann. Med. 29 (1997) p. 509.CrossRefGoogle Scholar
8.Chang, S. and Sun, J.K., “Perfluorocarbon Liquids in Vitreoretinal Surgery,” in Fluorine in Medicine in the 21st Century (Rapra Technology, Manchester, UK, 1994).Google Scholar
9.Anthony, P., Lowe, K.C., Davey, M.R., and Power, J.B., Biotechnol. Tech. 9 (1995) p. 777.CrossRefGoogle Scholar
10.Flaim, S.F. and Riess, J.G., U.S. Patent No. 5,726,209 (1998).Google Scholar
11.Kissa, E., Fluorinated Surfactants, Synthesis, Properties, Applications (Marcel Dekker, New York, 1994).Google Scholar
12.Greiner, J., Riess, J.G., and Vierling, P., “Fluorinated Surfactants Intended for Biomedical Uses,” in Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications,edited by Filler, R., Kobayashi, Y., and Yagupolski, L. (Elsevier Science, New York, 1993) p. 339.Google Scholar
13.Riess, J.G. and Krafft, M.P., Biomaterials 19 (1998) p. 1529.CrossRefGoogle Scholar
14.Sadtler, V.M., Giulieri, F., Krafft, M.P., and Riess, J.G., Cham. Eur. J. 10 (1998) p. 1952.3.0.CO;2-V>CrossRefGoogle Scholar
15.Riess, J.G., Arlen, C., Greiner, J., Le Blanc, M., Manfredi, A., Pace, S., Varescon, C., and Zarif, L., “Design, Synthesis and Evaluation of Fluorocarbons and Surfactants for In-Vivo Applications: New Perfluoroalkylated Surfactants,” in Blood Substitutes, edited by Chang, T.M.S. and Geyer, R.P. (Marcel Dekker, New York, 1989) p. 421.Google Scholar
16.Pavia, A.A., Pucci, B., Zarif, L., and Riess, J.G., Proc. Int. Symp. Control. Rel. Bioact. Mater. 21 (1994) p. 87.Google Scholar
17.Riess, J.G., J. Liposome Res. 5 (1995) p. 413.CrossRefGoogle Scholar
18.Riess, J.G., Pace, S., and Zarif, L., Adv. Mater. 3 (1991) p. 249.CrossRefGoogle Scholar
19.Riess, J.G., J. Drug Targeting 2 (1994) p. 455.CrossRefGoogle Scholar
20.Mardirossian, C. Der, Krafft, M.P., Gulik-Krzywicki, T., Le Maire, M., and Lederer, F., Biochimie 80 (1998) p. 531.CrossRefGoogle Scholar
21.Worah, D.M., Kessler, D.R., Meuter, A.R., Huang, M., Correas, J-M., and Quay, S.C., Drug Future 22 (1997) p. 378.Google Scholar
22.Maurizis, J.C., M, Azim, Rapp, M., Pucci, B., Pavia, A., Madelmont, J.C., and Veyre, A., Xenobiotica 24 (1994) p. 535.CrossRefGoogle Scholar
23.Gaines, G.L., Langmuir 7 (1991) p. 3054.CrossRefGoogle Scholar
24.Turberg, M.P. and Brady, J.E., J. Am. Chem. Soc. 110 (1988) p. 7797.CrossRefGoogle Scholar
25.Twieg, R.J., Russell, T.P., Siemens, R.L., and Rabolt, J.F., Macromolecules 18 (1985) p. 1361.CrossRefGoogle Scholar
26.Russell, T.P., Rabolt, J.F., Twieg, R.T., Siemens, R.L., and Farmer, B.L., Macromolecules 19 (1986) p. 1135.CrossRefGoogle Scholar
27.Riess, J.G., Solé-Violan, L., and Postel, M., J. Dispersion. Sci. Technol. 13 (1992) p. 349.CrossRefGoogle Scholar
28.Riess, J.G., Cornélus, C., Follana, R., Krafft, M.P., Mahé, A.M., Postel, M., and Zarif, L., Adv. Exp. Med. Biol. 345 (1994) p. 227.CrossRefGoogle Scholar
29.Trevino, L., Frézard, F., Rolland, J.P., Postel, M., and Riess, J.G., Coll. Surf. 88 (1994) p. 223.CrossRefGoogle Scholar
30.Krafft, M.P. and Ferro, Y., Polym. Preprints 39 (1998) p. 938.Google Scholar
31.Privitera, N., Naon, R., and Riess, J.G., Biochim. Biophys. Acta 1254 (1995) p. 1.CrossRefGoogle Scholar
32.Krafft, M.P., Sadtler, V.M., and Riess, J.G., “Multiple Emulsions with a Fluorocarbon Continuous Phase,” in Intl. Symp. on Fluorine Chemistry (Vancouver, 1997).Google Scholar
33.Brace, N.O., J. Org. Chem. 38 (1973) p. 3167.CrossRefGoogle Scholar
34.Rabolt, J.F., Russel, T.P., and Twieg, R.T., Macromolecules 17 (1984) p. 2786.CrossRefGoogle Scholar
35.Zarif, L., Postel, M., Septe, B., Trevino, L.,Riess, J.G., Mahé, A-M., and Follana, R., Pharm. Res. 11 (1994) p. 122.CrossRefGoogle Scholar
36.Elbert, R.,Folda, T., and Ringsdorf, H., J. Am. Chem. Soc. 106 (1984) p. 7687.CrossRefGoogle Scholar
37.Kunitake, T.Angew. Chem., Int. Ed. Engl. 31 (1992) p. 709.CrossRefGoogle Scholar
38.Riess, J.G., Frézard, F., Greiner, J., Krafft, M.P., Santaella, C., Vierling, P., and Zarif, L., “Membranes, Vesicles, and other Supramolecular Systems Made from Fluorinated Amphiphiles,” in Handbook of Nonmedical Applications of Liposomes, edited by Barenholz, Y. and Lasic, D.D. (CRC Press, Boca Raton, 1996) p. 97.Google Scholar
39.Riess, J.G., New J. Chem. 19 (1995) p. 891.Google Scholar
40.Riess, J.G. and Krafft, M.P., Chem. Phys. Lipids 75 (1995) p. 1.CrossRefGoogle Scholar
41.Krafft, M.P., Giulieri, F., and Riess, J.G., Angew. Chem., Int. Ed. Engl. 32 (1993) p. 741.CrossRefGoogle Scholar
42.Frézard, F., Santaella, C., Vierling, P., and Riess, J.G., Biochim. Biophys. Acta 1192 (1994) p. 61.CrossRefGoogle Scholar
43.Santaella, C., Frézard, F., Vierling, P., and Riess, J.G., FEBS Lett. 336 (1993) p. 481.CrossRefGoogle Scholar
44.Giulieri, F., Krafft, M.P., and Riess, J.G., Angew. Chem., Int. Ed. Engl. 33 (1994) p. 1514.CrossRefGoogle Scholar
45.Giulieri, F., Guillod, F., Greiner, J., Krafft, M., and Riess, J.G., Chem. Eur. J. 2 (1996) p. 1335.CrossRefGoogle Scholar
46.Imae, T., Krafft, M.P., Giulieri, F., Matsumoto, T., and Tada, T., Prog. Coll. Polym. Sci. 106 (1997) p. 52.Google Scholar
47.Imae, T., Funayama, K., Krafft, M.P., Giulieri, F., Tada, T., and Matsumoto, M., J. Coll. I. Sci. 212 (1999).Google Scholar
48.Fuhrhop, J. and Helfrich, W., Chem. Rev. 93 (1993) p. 1565.CrossRefGoogle Scholar
49.Schnur, J.M., Science 262 (1993) p. 1669.CrossRefGoogle Scholar
50.Chang, T.M.S.,Riess, J.G., and Winslow, R.M., eds., Blood Substitutes, General, Proc. 5th Int. Symp. on Blood Substitutes, vol. 1; Art. Cells, Blood Subst., Immob. Biotech. 22 (1994) p. 945.Google Scholar
51.Riess, J.G., ed., Blood Substitutes, the Fluorocarbon Approach, Proc. 5th Int. Symp. on Blood Substitutes, vol. 3; Art. Cells, Blood Subst., Immob. Biotech. 22 (1994) p. 945.Google Scholar
52.Faithfull, N.S., “The Role of Perfluorochemicals in Surgery and the ITU,” in Yearbook of Intensive Care and Emergency Medicine, edited by Vincent, J.L. (Springer-Verlag, Brussels, 1994) p. 237.Google Scholar
53.Riess, J.G., “Fluorocarbon-based Oxygen Delivery: Basic Principles and Product Development,” in Blood Substitutes: Methods, Products and Clinical Trials, edited by Chang, T.M.S. (Karger Landes Systems, New York, 1998) p. 101.Google Scholar
54.Weers, J.G., Liu, J., Fields, T., Resch, P., Cavin, J., and Arlauskas, R.A., Art. Cells, Blood Subst., Immob. Biotech. 22 (1994) p. 1175.CrossRefGoogle Scholar
55.Wahr, J.A., Trouwborst, A., Spence, R.K., Henny, C.P., Cernaianu, A.C., Graziano, C.P., Tremper, K.K., Flaim, K.E., Keipert, P.E., Faithfull, N.S., and Clymer, J.J., Aaesth. Analg. 82 (1996) p. 103.Google Scholar
56.Riess, J.G. and Keipert, P.E., “Update on Perfluorocarbon-based Oxygen Delivery Systems,” in Blood Substitutes — Present and Future Perspectives, Chapter 7, edited by Tsuchida, E. (Elsevier Science, Amsterdam, 1998) p. 91.CrossRefGoogle Scholar
57.Monk, T., Winston, R., Wahr, J., Frei, D., Wang, J., and Keipert, P., Anesth. Analg. 86 (1998) p. S142.CrossRefGoogle Scholar
58.Keipert, P.E., Faithfull, N.S., Roth, D.J., Bradley, J.D., Batra, S., Jochelson, P., and Flaim, K.E., Adv. Exp. Med. Biol. 388 (1996) p. 603.CrossRefGoogle Scholar
59.Zuck, T.F. and Riess, J.G., Crit. Rev. Clin. Lab. Sci. 31 (1994) p. 295.CrossRefGoogle Scholar
60.Amory, D.W., Leone, B., Croughwell, N.D., White, W.D., Richardson, K.M.B., Osgood, C.F., Gerstle, L., and Newman, M.F., Anesth. Analy. 86 (1998).Google Scholar
61.Lattes, A. and Rico-Lattes, I., Art. Cells, Blood Subst., Immob. Biotech. 22 (1994) p. 1007.CrossRefGoogle Scholar
62.Schubert, K-V. and Kaler, E.W., Coll. Surf. 84 (1994) p. 97.CrossRefGoogle Scholar
63.Mathis, G., Leempoel, P., Ravey, J.C., Selve, C., and Delpuech, J.J., J. Am. Chem. Soc. 106 (1984) p. 6162.CrossRefGoogle Scholar
64.Forsberg, F. and Goldberg, B.B., Sci. Med. May/June (1998) p. 54.Google Scholar
65.Dittrich, H.C., “Safety of Albumin Shell Microspheres Albunex and Optison,” in Proc. Ultrasound Contrast Research Symp. (San Diego, 1998).Google Scholar
66.Schutt, E.G.,Pelura, T.J., and Hopkins, R.M., Acad. Radiol. 35 (1996) p. 188.CrossRefGoogle Scholar
67.Cohen, J.L., Cheirif, J., Segar, D.S., Gillam, L.D., Gottdiener, J.S., Hausnerova, E., and Bruns, D.E.J. Am. Coll. Cardiol. 32 (1998) p. 746.CrossRefGoogle Scholar
68.Sadtler, V.M., Krafft, M.P., and Riess, J.G., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 1976.CrossRefGoogle Scholar
69.Sadtler, V.M., Krafft, M.P., and Riess, J.G., “Reverse Water-in-Fluorocarbon Emulsions as a Drug Delivery System: An In Vitro Study,” in Proc. 2nd World Congress on Emulsion (Bordeaux, 1997).Google Scholar
70.Trevino, L.A., Dellamary, L.A., Tarara, T.E., Weers, J.G., and Ranney, H.M., U.S. Patent No. 5,667,809 (1997).Google Scholar
71.Johnson, K.A., U.S. Patent No. 5,126,123 (1992).Google Scholar
72.Kabalnov, A., Tarara, T., Weers, J.G., Schutt, E., and Riess, J.G., U.S. Patent Application No. 60,060,337 (1997).Google Scholar
73.Krafft, M.P., “Fluorocarbon Gels,” in Novel Cosmetic Delivery Systems, edited by Magdassi, S. and Touitou, E. (Marcel Dekker, New York, 1998) p. 195.Google Scholar
74.Ravey, J.C. and Stebe, M., Prog. Coll. Polym. Sci. 82 (1990) p. 218.CrossRefGoogle Scholar
75.Krafft, M.P. and Riess, J.G., Angew. Chem. Int., Ed. Engl. 33 (1994) p. 1100.CrossRefGoogle Scholar
76.Krafft, M.P. and Riess, J.G., French Patent No. 2,737,135 (1995).Google Scholar
77.Barton, S.W., Goudot, A., Bouloussa, O., Rondelez, F., Lin, B., Novak, F., Acero, A., and Rice, S.A., J. Chem. Phys. 96 (1992) p. 1343.CrossRefGoogle Scholar
78.Goldmann, M., Nassoy, P., and Rondelez, F., Physica A 200 (1993) p. 688.CrossRefGoogle Scholar
79.Jeanneaux, F., Giulieri, F., Krafft, M.P., and Goldmann, M. (in preparation).Google Scholar
80.Krafft, M.P., Huo, Q., Vidon, S., Leblanc, R., and Giulieri, F., presented at American Chemical Society Meeting, Boston, 1998.Google Scholar
81.Krafft, M.P. and Cohen, J. (in preparation).Google Scholar