Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-20T18:13:34.689Z Has data issue: false hasContentIssue false

Ferroelectric Ceramics for Dielectric Electromechanical and Pyroelectric Applications

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The growth of integrated circuit applications has been a strong influence in the expansion of markets for ferroelectric ceramics. Ferroelectrics perform three major functions in circuits:

1. They store energy with a high volume efficiency,

2. They have very useful large changes in impedance with frequency, and

3. They transduce between various energy forms and electrical signals.

For many years commercial ferroelectric ceramics have been dominated by the barium titanate and lead zirconate titanate (PZT) systems. A tremendous research effort has been dedicated to these systems with very interesting studies still progressing on basic understanding, reproducibility, and modifications to utilize inexpensive electrodes. Processing studies are also seeking to reduce the size of devices and develop new transducing and sensing applications. The need to reduce cost and to fulfill specific applications is creating demands for new materials. Much of this effort has centered on lead-based systems referred to as relaxor ferroelectrics.

The areas of application of ferroelectrics are narrowed in this review by eliminating the interfacial (grain-grain boundary) devices and electro-optic applications discussed in “Electronic Ceramic Thin Films” by Bruce Tuttle in this issue. Also, this article can only cover a small fraction of the information indicated by the title.

Type
Ceramics
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Staff, , Ceramic Industry (August, 1986) p. 24.Google Scholar
2.Arlt, G. and Peusens, H., Ferroelectrics 48 (1983) p. 213.CrossRefGoogle Scholar
3.Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58 (1985) p. 1619.CrossRefGoogle Scholar
4.Buessem, W.R., Cross, L.E., and Goswami, A.K., J. Am. Ceram. Soc. 49 (1966) p. 33.CrossRefGoogle Scholar
5.Buessem, W.R., Cross, L.E., and Goswami, A.K., J. Am. Ceram. Soc. 49 (1966) p. 36.CrossRefGoogle Scholar
6.Devonshire, A.F., Philos. Mag. Suppl. 3 (1954) p. 85.Google Scholar
7.von Hipple, A., Dielectrics and Waves (John Wiley and Sons, New York, 1954) p. 243.Google Scholar
8.Xi, Y., McKinstery, H., and Cross, L.E., J. Am. Ceram. Soc. 66 (1983) p. 637.CrossRefGoogle Scholar
9.Setter, N., PhD thesis, Penn State University, 1980.Google Scholar
10.Smolenskii, G.A., Isupon, V.A., Agranovska, A.I., and Papor, N., Soc. Phys. Solid State 2 (1961) p. 2584.Google Scholar
11.Cross, L.E., Am. Ceram. Soc. Bull. 63 (1984) p. 586.Google Scholar
12.Burn, I., J. Mater. Sci. 17 (1982) p. 1398.CrossRefGoogle Scholar
13.Dosch, R.G., in Better Ceramics Through Chemistry, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 32, Elsevier, New York, 1984) p. 157.Google Scholar
14.Shaikh, A.S., Vest, R.W., and Vest, G.M., IEEE Cat. #86CH2358-0 (1986) p. 126.Google Scholar
15.Kinoshita, K. and Yamaji, A., J. Appl. Phys. 47 (1976) p. 371.CrossRefGoogle Scholar
16.Wakino, K., Minai, K., and Sakabe, Y., Jpn. J. Appl. Phys. 20 (Suppl. 24) (1981) p. 4.Google Scholar
17.Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66 (1987) p. 704.Google Scholar
18.Swartz, S.L., IEEE Cat. #86CH2358-0 (1986) p. 153.Google Scholar
19.Yonezawa, M., Am. Ceram. Soc. Bull. 62 (1983) p. 1375.Google Scholar
20.Yonezawa, M., Ferroelectrics 68 (1986) p. 181.CrossRefGoogle Scholar
21.Biggers, J.V. and Schulze, W.A., Am. Ceram. Soc. Bull. 53 (1974) p. 809.Google Scholar
22.Shimada, Y., Utsumi, K., Suzuki, M., Takamizawa, H., Nitta, M., and Watari, T., IEEE Trans. Comp. Hybrid Man. Tech. CHMT-6 (1983) p. 382.CrossRefGoogle Scholar
23.Utsumi, K., Shimada, Y., Ikeda, T., and Takamizawa, H., Ferroelectrics 68 (1986) p. 157.CrossRefGoogle Scholar
24.Isupov, V.A., Ferro. Lett. 7 (1987) p. 97.CrossRefGoogle Scholar
25.Newnham, R.E., Ferroelectrics 68 (1986) p. 1.CrossRefGoogle Scholar
26.Gururaja, T.R., Schulze, W.A., Cross, L.E., Newnham, R.E., Auld, B.A., and Wang, J., IEEE Trans. Sonics Ultrason. SU-32 (1985) p. 481.CrossRefGoogle Scholar
27.Gururaja, T.R., Schulze, W.A., Cross, L.E., and Newnham, R.E., IEEE Trans. Sonics Ultrason. SU-32 (1986) p. 499.Google Scholar
28.Takeuchi, H. and Nakaya, C., Ferroelectrics 68 (1986) p. 53.Google Scholar
29.Giniewicz, J.R., Newnham, R.E., Safari, A., and Moffatt, D., Ferroelectrics 73 (1987) p. 405.CrossRefGoogle Scholar
30.Haun, M.J., MS thesis, Penn State University, 1983.Google Scholar
31.Banno, H., Ferroelectrics 5 (1983) p. 3.CrossRefGoogle Scholar
32.Trolier, S., Geist, C., Safari, A., Newnham, R.E., and Xu, Q.C., IEEE Cat. #86CH2358-0 (1986) p. 707.Google Scholar
33.Shiosaki, T. and Kawabata, A., presented at U.S.: Japan Seminar on Dielectrics and Piezoelectrics, Toyama, Japan, 1986 (unpublished).Google Scholar
34.Payne, D.A., Budd, K.D., and Dey, S.K., presented at U.S.: Japan Seminar on Dielectrics and Piezoelectrics, Toyama, Japan, 1986 (unpublished).Google Scholar
35.Sayer, M. (private communication).Google Scholar
36.Yamashita, Y., Yokoyama, K., Honda, H., and Takahashi, T., Jpn. J. Appl. Phys. 20 (1981) p. 183.CrossRefGoogle Scholar
37.Takeuchi, H., Jyomura, S., Yamamoto, E., and Ito, Y., J. Acoust. Soc. Am. 72 (1982) p. 1114.CrossRefGoogle Scholar
38.Damjanovic, D., Gururaja, T.R., and Cross, L.E., Am. Ceram. Soc. Bull. 66 (1987) p. 699.Google Scholar
39.Belsick, J., Halliyal, A., Kumar, U., and Newnham, R.E., Am. Ceram. Soc. Bull. 66 (1987) p. 664.Google Scholar
40.Halliyal, A., Kumar, U., Newnham, R.E., and Cross, L.E., Am. Ceram. Soc. Bull. 66 p. 671.Google Scholar
41.Seth, V.K., MS thesis, Alfred University, 1986.Google Scholar
42.Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19 (1980) p. 31.CrossRefGoogle Scholar
43.Okazaki, K., Igarashi, H., Nagata, K., Yamamoto, T., and Tashino, S., IEEE Cat. #86CH2358-0 (1986) p. 328.Google Scholar
44.Seth, V.K. and Schulze, W.A., IEEE Cat. #86CH2358-0 (1986) p. 338.Google Scholar
45.Uchino, K., Am. Ceram. Soc. Bull. 65 (1986) p. 647.Google Scholar
46.Watton, R., IEEE Cat.#86CH2358-0 (1986) p. 172.Google Scholar
47.Dalal, N.S., IEEE Cat.#86CH2358-0 (1986) p. 188.Google Scholar
48.Lin, X.S., Bhalla, A.S., and Cross, L.E., IEEE Cat.#86CH2358-0 (1986) p. 192.Google Scholar
49.Neurgaonkar, R.R., Cory, W.K., and Oliver, J.R., Ferroelectrics 51 (1983) p. 3.CrossRefGoogle Scholar