Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T14:02:40.808Z Has data issue: false hasContentIssue false

Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects

Published online by Cambridge University Press:  06 April 2011

Get access

Abstract

For decades, a kind of nanoscale microstructure, known as the premartensitic “tweed structure” or “mottled structure,” has been widely observed in various martensitic or ferroelastic materials prior to their martensitic transformation, but its origin has remained obscure. Recently, a similar nanoscale microstructure also has been reported in highly doped ferroelastic systems, but it does not change into martensite; instead, it undergoes a nanoscale freezing transition—“strain glass” transition—and is frozen into a nanodomained strain glass state. This article provides a concise review of the recent experimental and modeling/simulation effort that is leading to a unified understanding of both premartensitic tweed and strain glass. The discussion shows that the premartensitic tweed or strain glass is characterized by nano-sized quasistatic ferroelastic domains caused by the existence of random point defects or dopants in ferroelastic systems. The mechanisms behind the point-defect-induced nanostructures and glass phenomena will be reviewed, and their significance in ferroic functional materials will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tanner, L.E., Schryvers, D., Shapiro, S.M., Mater. Sci. Eng. A 127, 205 (1990).Google Scholar
2.Murakami, Y., Shibuya, H., Shindo, D., J. Microsc. 203, 22 (2001).Google Scholar
3.Castán, T., Vives, E., Mañosa, L., Planes, A., Saxena, A., in Magnetism and Structure in Functional Materials, Planes, A., Mañosa, L., Saxena, A., Eds., (Springer Verlag, Berlin, 2005), pp. 2748.CrossRefGoogle Scholar
4.Dai, X.H., Xu, Z., Viehland, D., Philos. Mag. A 70, 33 (1994).Google Scholar
5.Dai, X.H., Xu, Z., Li, J.F., Viehland, D., Philos. Mag. A 74, 395 (1996).CrossRefGoogle Scholar
6.Saxena, A., Castán, T., Planes, A., Porta, M., Kishi, Y., Lograsso, T.A., Viehland, D., Wuttig, M., Graef, M. De, Phys. Rev. Lett. 92, 197203 (2004).Google Scholar
7.Schmahl, W.W., Putnis, A., Salje, E., Freeman, P., Graeme-Barber, A., Jones, R., Singh, K.K., Blunt, J., Edwards, P.P., Loram, J., Mirza, K., Philos. Mag. Lett. 60, 241 (1989).Google Scholar
8.Xu, Y.W., Suenaga, M., Tafto, J., Sabatini, R.L., Moodenbaugh, A.R., Zolliker, P., Phys. Rev. B 39, 6667 (1989).Google Scholar
9.Millange, F., Caignaert, V., Domengés, B., Raveau, B., Suard, E., Chem. Mater. 10, 1974 (1998).CrossRefGoogle Scholar
10.Mathur, N., Littlewood, P., Nat. Mater. 3, 207 (2004).Google Scholar
11.Ahn, K.H., Lookman, T., Bishop, A.R., Nature 428, 401 (2004).Google Scholar
12.Dagotto, E., Science 309, 257 (2005).CrossRefGoogle Scholar
13.Bishop, A.R., Lookman, T., Saxena, A., Shenoy, S.R., Europhys. Lett. 63, 289 (2003).CrossRefGoogle Scholar
14.Sarkar, S., Ren, X., Otsuka, K., Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar
15.Wang, Y., Ren, X., Otsuka, K., Phys. Rev. Lett. 97, 225703 (2006).Google Scholar
16.Wang, Y., Ren, X., Otsuka, K., Saxena, A., Phys. Rev. B 76, 132201 (2007).Google Scholar
17.Wang, Y., Ren, X., Otsuka, K., Saxena, A., Acta Mater. 56, 2885 (2008).Google Scholar
18.Ren, X.B., Wang, Y., Zhou, Y., Zhang, Z., Wang, D., Fan, G., Otsuka, K., Suzuki, T., Ji, Y., Zhang, J., Tian, Y., Hou, S., Ding, X., Philos. Mag. (2009), in press.Google Scholar
19.Lloveras, P., Castán, T., Porta, M., Planes, A., Saxena, A., Phys. Rev. Lett. 100, 165707 (2008).CrossRefGoogle Scholar
20.Lloveras, P., Castán, T., Porta, M., Planes, A., Saxena, A., Phys. Rev. B 80, 054107 (2009).Google Scholar
21.Kartha, S., Castán, T., Krumhansl, J.A., Sethna, J.P., Phys. Rev. Lett. 67, 3630 (1991).Google Scholar
22.Kartha, S., Krumhansl, J.A., Sethna, J.P., Wickham, L.K., Phys. Rev. B 52, 803 (1995).Google Scholar
23.Semenovskaya, S., Khachaturyan, A.G., Acta Mater. 45, 4367 (1997).CrossRefGoogle Scholar
24.Semenovskaya, S., Khachaturyan, A.G., J. Appl. Phys. 83, 5125 (1998).CrossRefGoogle Scholar
25.Salje, E.K.H., Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge University Press, Cambridge, 1990).Google Scholar
26.Otsuka, K., Wayman, C.M., Eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
27.Planes, A., Mañosa, L., Solid State Phys. 55, 159 (2001).Google Scholar
28.Saxena, A., Lookman, T., in Handbook of Materials Modeling, Yip, S., Ed. (Springer-Verlag, 2005), pp. 21432154.Google Scholar
29.Shenoy, S.R., Lookman, T., Saxena, A., Bishop, A.R., Phys. Rev. B 60, R12537 (1999); K.O. Rasmussen, T. Lookman, A. Saxena, A.R. Bishop, R.C. Albers, S.R. Shenoy, Phys. Rev. Lett. 87, 055704 (2001).Google Scholar
30.Shapiro, S.M., Yang, B.X., Noda, Y., Tanner, L.E., Schryvers, D., Phys. Rev. B 44, 9301 (1991).Google Scholar
31.Cai, W., Murakami, Y., Otsuka, K., Mater. Sci. Eng. A 275, 186 (1999).Google Scholar
32.Kakeshita, T., Fukuda, T., Tetsukawa, H., Saburi, T., Kindo, K., Takeuchi, T., Honda, M., Endo, S., Taniguchi, T., Miyako, Y., Jpn. J. Appl. Phys. 37, 2535 (1998).Google Scholar
33.Otsuka, K., Ren, X., Progr. Mater. Sci. 50, 511 (2005).CrossRefGoogle Scholar
34.Choi, M.S., Fukuda, T., Kakeshita, T., Mori, H., Philos. Mag. 86, 67 (2006).Google Scholar
35.Petry, W., J. Phys. IV 5, C215 (1995).Google Scholar
36.Zhang, J.S., PhD thesis, University of Tsukuba, 2000.Google Scholar
37.Wang, Y., PhD thesis, Xi'an Jiaotong University, 2008.Google Scholar
38.Wadhawan, V.K., Introduction to Ferroic Materials (Gordon and Breach, Armsterdam, 2000).CrossRefGoogle Scholar
39.Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M., Phys. Rev. B 46, 8003 (1992).Google Scholar
40.Mydosh, J.A., Spin Glasses (Taylor & Francis, London, 1993).Google Scholar
41.Burns, G., Dacol, F.H., Phys. Rev. B 28, 2527 (1983).CrossRefGoogle Scholar
42.Murakami, Y., Shindo, D., Oikawa, K., Kainuma, R., Ishida, K., Acta Mater. 50, 2173 (2002).Google Scholar