Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:20:44.380Z Has data issue: false hasContentIssue false

Environmentally Sensitive Polymers and Hydrogels

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Environmentally sensitive polymers and hydrogels exhibit sharp changes in behavior in response to relatively small changes in conditions such as temperature or pH. Typical changes include precipitation of the polymer in water or collapse of a hydrogel with expulsion of a large fraction of the gel pore water. These changes are depicted in Figure 1. If such a polymer is grafted or adsorbed on another polymer surface or within the pores of a porous membrane, then one observes sharp changes in wettability or permeability, respectively, when the polymer is environmentally stimulated. These changes are usually reversible, although the recdissolution or reswelling processes are often slower than the precipitation or deswelling steps. Other examples of environmental stimuli and polymer system responses are listed in Tables I and II.

A large number of polymers display sharp responses to such stimuli. Many are based on vinyl monomers, such as anionic and cationic monomers for pH, specificion, solvent, or electrically responsive systems, and N-alkyl substituted acrylamides (e.g., N-isopropyl acrylamide, or NIPAAm) for temperature-sensitive systems. Other copolymer compositions may contain the responsive moiety as a pendant group on one of the monomers. Photoresponsive groups have been incorporated in such a way.

The ratio in the responsive polymer of the responsive monomeric component to the “nonresponsive” comonomer (e.g., the pH-sensitive monomer, acrylic acid, versus acrylamide or the temperature-sensitive monomer, NIPAAm versus acrylamide) will control both the sharpness and intensity of the response as well as the specific environmental conditions where it begins.

Type
Biomedical Materials
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

General or Review Articles

1.DeRossi, D., Kajiwara, K., Osada, Y., and Yamauchi, A., Polymer Gels, (Plenum Press, New York, 1991).CrossRefGoogle Scholar
2.Heller, J., Med. Dev. Diag. Industry 7 (1985).Google Scholar
3.Hoffman, A.S., J. Contr. Rel. 6 (1987), p. 297. Also, A.S. Hoffman and N. Monji, U.S. Patent No. 4,912,032 (March 27, 1990).CrossRefGoogle Scholar
4.Pulsed and Self-Regulated Drug Delivery, edited by Kost, J. (CRC Press, Boca Raton, FL, 1990).Google Scholar
5.Hydrogels in Med. and Pharm. Vol. III, edited by Peppas, N.A. and Korsmeyer, R.W. (CRC Press, Boca Raton, FL, 1987) p. 109.Google Scholar
6.Tanaka, T., Sci. Amer. 1 (1981) p. 110.Google Scholar
1.Auditore-Hargreaves, K., Houghton, R.L., Monji, N., Priest, J.H., Hoffman, A.S., and Nowinski, R.C., Clin. Chem. 33 (1987) p. 1509.CrossRefGoogle Scholar
2.Chen, J.P., Yang, H.J., and Hoffman, A.S., Biomaterials 11 (1990) p. 625.CrossRefGoogle Scholar
3.Cole, C.A., Schreiner, S.M., Priest, J.H., Monji, N., and Hoffman, A.S. (ACS Symposium Series, 350, edited by Russo, P., Washington, DC, 1987) p. 245.CrossRefGoogle Scholar
4.Heskins, H. and Guillet, J.E., J. Macromol. Sci.-Chem. A2 (1968) p. 1441.CrossRefGoogle Scholar
5.Monji, N., Cole, C.A.,Tarn, M.,Goldstein, L., Nowinski, R.C., and Hoffman, A.S., Biophys. Biochem. Res. Comm. 172 (1990) p. 652.CrossRefGoogle Scholar
6.Monji, N., Cole, C.A., Tam, M.R., Goldstein, L., Hoffman, A.S., and Nowinski, R.C., Proc. Third World Biomtls. Congr. (Kyoto, Japan, April 21-25, 1988) p. 298.Google Scholar
7.Monji, N. and Hoffman, A.S., Appl. Biochem. and Biotech. 14 (1987) p.107. Also N. Monji, A.S. Hoffman, J.H. Priest, and R.L. Houghton, U.S. Patent No. 4,780,409 (October 25,1988).CrossRefGoogle Scholar
8.Priest, J.H., Murray, S.L., Nelson, R.G., and Hoffman, A.S. (ACS Symposium Series 350, edited by Russo, P., Washington, DC, 1987) p. 255.CrossRefGoogle Scholar
9.Yang, H.J., Cole, C.A., Monji, N., and Hoffman, A.S., J. Polymer Sci., A. Polymer Chem. 28 (1990) p. 219226.CrossRefGoogle Scholar
1.Okahata, Y., Nakamura, G., and Noguchi, H., J. Chem. Soc. Perkin Trans. II (1987) p. 1003.CrossRefGoogle Scholar
2.Okahata, Y., Noguchi, H., and Seki, T., Macromol. 19 (1986) p. 493.CrossRefGoogle Scholar
3.Okahata, Y., in Current Topics in Polymer Sci., Vol II, edited by Ottenbrite, R.M., Utracki, L.A., and Inoue, S. (Hanser, Munich, 1987) p. 299.Google Scholar
4.Taylor, L.D. and Biasotti, B., J. Appl. Poly. Sci. 20 (1976) p. 1721.CrossRefGoogle Scholar
5.Taylor, L.D. and Cerankowski, L.D., J. Poly. Sci. Poly. Chem. 13 (1975) p. 2551.CrossRefGoogle Scholar
6.Tirrell, D.A., J. Contr. Rel. 6 (1987) p. 15.CrossRefGoogle Scholar
7.Uenoyama, S. and Hoffman, A.S., Radiat. Phys. Chem. 32 (1988) p. 665.Google Scholar
8.Urry, D.W., Harris, R.D., and Prasad, K.V., J. Amer. Chem. Soc. 110 (1988) p. 3303.CrossRefGoogle Scholar
1.Bae, Y.H., Okano, T., Hsu, R., and Kim, S.W., Macromol. Rapid Comm. 8 (1987) p. 481.CrossRefGoogle Scholar
2.Chiklis, C.K. and Grasshof, J.M., J. Poly. Sci. A-2 8 (1970) p. 1617.CrossRefGoogle Scholar
3.Cussler, E.L., Stokar, M.R., and Varburg, J.E., AIChe J. 30 (1984) p. 578.CrossRefGoogle Scholar
4.DeRossi, D., Galletti, P.M., Davio, P., and Richardson, P.D., ASAIO J. 6 (1983) p. 1.Google Scholar
5.DeRossi, D., Parrini, P., Chiarelli, P., and Buzzigoli, G., Trans. ASAIO 31 (1985) p. 60.Google Scholar
6.Dong, L.C. and Hoffman, A.S. (ACS Symposium Series, 350, edited by Russo, P., Washington, DC, 1987) p. 236.Google Scholar
7.Dong, L.C. and Hoffman, A.S., J. Contr. Release 13 (1990), p. 31; J. Contr. Release 15 p. 141.CrossRefGoogle Scholar
8.Gehrke, S.H. and Cussler, E.L., Chem. Eng. Sci. 44 (1989) p. 559.CrossRefGoogle Scholar
9.Grimshaw, P.E., Grodzinsky, A.J., Yarmush, M.L., and Yarmush, D.M., Chem. Eng. Sci. 44 (1989) p. 827.CrossRefGoogle Scholar
10.Heller, J., J. Contr. Rel. 8 (1988) p. 111.CrossRefGoogle Scholar
11.Huang, X., Akehata, T., Unno, H., and Hirasa, O., Biotech. Bioeng. 34 (1989) p. 102.CrossRefGoogle Scholar
12.Ichijo, H., J. Appl. Poly. Sci. 28 (1983) p. 1447.CrossRefGoogle Scholar
13.Irie, M. and Kungwatchakun, D., Macromol. Chem. Rapid Comm. 5 (1985) p. 829.CrossRefGoogle Scholar
14.Ishihara, K., Hamada, N., Kato, S., and Shinohara, I., J. Poly. Sci. Poly. Chem. 22 (1984) p. 121.CrossRefGoogle Scholar
15.Ishihara, K., Muramoto, N., and Shinohara, I., J. Appl. Poly. Sci. 29 (1984) p. 211.CrossRefGoogle Scholar
16.Ishihara, K., Muramoto, N., Fujii, H., and Shinohara, I., J. Poly. Sci. Poiy. Lett. 23 (1985) p. 531.CrossRefGoogle Scholar
17.Kawaguchi, H., Hoshino, F., and Ohtsuka, Y., Macromol. Chem. Rapid Comm. 7 (1986) p. 109.CrossRefGoogle Scholar
18.Kost, J., Horbett, T.A., Ratner, B.D., and Singh, M., J. Biomed. Mater. Res. 19 (1985) p. 1117.CrossRefGoogle Scholar
19.Kugo, K., Grashin, J., and Hoffman, A.S., Proc. Third World Biomateriats Congress (Kyoto, Japan, April 21-25, 1988) p. 108.Google Scholar
20.Okano, T., Bae, Y.H., Jacobs, H., and Kim, S.W., J. Contr. Rel. 11 (1990) p. 255.CrossRefGoogle Scholar
21.Osada, Y., Adv. Poly. Sci. 82 (1987) p. 3.Google Scholar
22.Osada, Y. and Takeuchi, Y., J. Poly. Sci. Poly. Lett. 19 (1981) p. 303.CrossRefGoogle Scholar
23.Park, T.G. and Hoffman, A.S., App. Biochem. and Biotech. 19 (1988) p. 1.CrossRefGoogle Scholar
24.Park, T.G. and Hoffman, A.S., Biotech. Lett. 11 (1989) p. 17.CrossRefGoogle Scholar
25.Park, T.G. and Hoffman, A.S., Biotech. Bioeng. 35 (1990) p. 152.CrossRefGoogle Scholar
26.Park, T.G. and Hoffman, A.S., J. Biomed. Mater. Res. 24 (1990) p. 2138.CrossRefGoogle Scholar
27.Siegel, R.A. and Firestone, B.A., Macromol. 21 (1988) p. 3254.CrossRefGoogle Scholar
28.Suzuki, M., IUPAC Chemrawn VI (1987) p. IB II.Google Scholar
29.Tanaka, T., Nishio, I., Sun, S.T., and Veno-Nishio, S., Science 218 (1982) p. 467.CrossRefGoogle Scholar