Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:37:45.588Z Has data issue: false hasContentIssue false

Environmental Degradation of Materials in Advanced Reactors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Advanced fission-based reactors challenge our ability to fully understand environment–materials reactions in terms of fundamental stability and kinetics, including the influences of composition, microstructure, and system design, and to predict associated long-term performance. This article briefly describes corrosion reactions and the processes by which such are managed for several elevated-temperature environments associated with advanced reactor concepts: helium, molten Pb–Bi, fluorides, and supercritical water. For most of the subject environments, corrosion resistance critically depends on the ability to form and maintain protective surface layers. Effects of corrosion on mechanical behavior can be from thermally and chemically induced changes in microstructures or from environmental effects on cracking susceptibility. In most cases, the simultaneous effects of chemical reactivity and radiation have not been fully addressed, nor has much attention been paid to newly emerging alloy compositions or the effects of substantially increased operating temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Burlet, H., Gentzbittel, J.M., Cabet, C., Lamagnère, P., Blat, M., Renaud, D., Dubiez-Le Goff, S., Pierron, D., “Evaluation of Nickel-Based Materials for VHTR Heat Exchanger,” in Structural Materials for Innovative Nuclear Systems (SMINS) (OECD Publishing, London, 2008). p. 79.Google Scholar
2 Quadakkers, W. J., Werkst. Korros. 36, 335 (1985).CrossRefGoogle Scholar
3 Cabet, C., Chapovaloff, J., Rouillard, F., Girardin, G., Kaczorowski, D., Wolski, K., Pijolat, M., J. Nucl. Mater. 375, 173 (2008).CrossRefGoogle Scholar
4 Rouillard, F., Cabet, C., Wolski, K., Pijolat, M., Oxid. Met. 68, 133 (2007).CrossRefGoogle Scholar
5 Cabet, C., Terlain, A., Lett, P., Guétaz, L., Gentzbittel, J.M., Mater. Corros. 57, 147 (2006).CrossRefGoogle Scholar
6 Kurata, Y., Ogawa, Y., Nakajima, H., Kondo, T., in Proc. Workshop Structural Design Criteria for HTR, Breitbach, G., Schubert, F., Nickel, H., Eds. (Fraunhofer IZFP, Saarbrücken, Germany, 1989), p. 275.Google Scholar
7 Ennis, P.J., Mohr, K.P., Schuster, H., Nucl. Technol. 66, 363 (1984).CrossRefGoogle Scholar
8 Kofstad, P., High Temperature Corrosion (Elsevier, London, 1988).Google Scholar
9 Nicholas, M.G., Old, C.F., J. Mater Sci. 14, 1 (1979).CrossRefGoogle Scholar
10 Epstein, L.F., Chem. Eng. Prog. Symp. Ser. 20 53, 67 (1957).Google Scholar
11 Weeks, J.R., Klamut, C.J., Gurinsky, D.H., Proc. Alkali Metal Coolants Symp. (IAEA, Vienna, Austria, 1966), p. 3.Google Scholar
12 Asher, R.C., Davies, D., Beetham, S.A., Corros. Sci. 17, 545 (1977).CrossRefGoogle Scholar
13 Shmatko, B.A., Rusanov, A.E., Mater. Sci. 36, 689 (2000).CrossRefGoogle Scholar
14 Barbier, F., Rusanov, A., J. Nucl. Mater. 296, 231 (2001).CrossRefGoogle Scholar
15 Glasbrenner, H., Konys, J., Mueller, G., Rusanov, A., J. Nucl. Mater. 296, 237 (2001).CrossRefGoogle Scholar
16 Zhang, J., Li, N., Chen, Y., Rusanov, A.E., J. Nucl. Mater. 336, 1 (2005).CrossRefGoogle Scholar
17 Kurata, Y., Futakawa, M., Kikuchi, K., Saito, S., Osugi, T., J. Nucl. Mater. 301, 28 (2002).CrossRefGoogle Scholar
18 Wright, I.G., Tortorelli, P.F., Schütze, M., “Oxide Growth and Exfoliation on Alloys Exposed to Steam” (EPRI Rep. 1013666, EPRI, Palo Alto, CA, 2007).Google Scholar
19 Forsberg, C.W., Proc. 2006 Intl. Cong. Adv. Nucl. Power Plants (ICAPP'06) (ANS, La Grange Park, IL, 2006), p. 6292.Google Scholar
20 Williams, D.F., Toth, L.M., Clarno, K.T. “Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR),” (Rep. ORNL/TM-2006/12, ORNL, Oak Ridge, TN, 2006).CrossRefGoogle Scholar
21 Broc, M., Fauvet, P., Sannier, J., Santarini, G., J. Nucl. Mater. 119, 123 (1983).CrossRefGoogle Scholar
22 Keiser, J.R., Manning, D.L., Clausing, R.E., “Corrosion Resistance of Some Nickel-Base Alloys to Molten Fluoride Salts Containing UF4 and Tellurium,” in Molten Salts (The Electrochemical Society, New York, 1976), pp. 315328.Google Scholar
23 Keiser, J.R., “Status of Tellurium–Hastelloy N Studies in Molten Fluoride Salts,” (Rep. ORNL/TM-6002, ORNL, Oak Ridge, TN, 1977).CrossRefGoogle Scholar
24 Was, G.S., Ampornrat, P., Gupta, G., Teysseyre, S., West, E.A., Allen, T.R., Sridharan, K., Tan, L., Chen, Y., Ren, X., Pister, C., J. Nucl. Mater. 371, 176 (2007).CrossRefGoogle Scholar
25 Allen, T.R., Tan, L., Chen, Y., Ren, X., Sridharan, K., Was, G.S., Gupta, G., Ampornrat, P., “Corrosion of Ferritic–Martensitic Alloys in Supercritical Water for GenIV Application,” in Proc. Global 2005 (AESJ, Takasaki City, Japan, 2005), paper 419.Google Scholar
26 Hwang, S.S., Lee, B.H., Kim, J.G., Jang, J., J. Nucl. Mater. 372, 177 (2008).CrossRefGoogle Scholar
27 Chen, Y., Sridharan, K., Ukai, S., Allen, T.R., J. Nucl. Mater. 371, 118 (2007).CrossRefGoogle Scholar
28 Yurek, G.J., Eisen, D., Garratt-Reed, A., Metall. Trans. A 13, 473 (1982).CrossRefGoogle Scholar
29 Motta, A.T., Yilmazbayhan, A., Gomes da Silva, M.J., Comstock, R.J., Was, G.S., Busby, J.T., Gartner, E., Peng, Q., Jeong, Y.H., Park, J.Y., J. Nucl. Mater. 371, 61 (2007).CrossRefGoogle Scholar
30 Teysseyre, S., Jiao, Z., West, E., Was, G.S., J. Nucl. Mater. 371, 107 (2007).CrossRefGoogle Scholar
31 Teysseyre, S., Was, G.S., “Stress Corrosion Cracking of Neutron Irradiated Steel in Supercritical Water,” in Proc. 13th International Conference on Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R., Busby, J., King, P.J., Eds. (Canadian Nuclear Society, Toronto, Ontario, Canada, 2007).Google Scholar
32 West, E.A., Teysseyre, S., Jiao, Z., Was, G.S., “Influence of Irradiation Induced Microstructure on the Stress Corrosion Cracking Behavior of Austenitic Alloys in Supercritical Water,” in Proc. 13th International Conference on Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R., Busby, J., King, P.J., Eds. (Canadian Nuclear Society, Toronto, Ontario, Canada, 2007).Google Scholar