Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:17:29.939Z Has data issue: false hasContentIssue false

Environmental Actinide Science

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Considerable progress has been made in the study of environmental plutonium science in the last 30-plus years, driven to a large extent by concerns about the release and migration of large amounts of plutonium into the accessible geosphere. Plutonium has been introduced into the environment through several pathways. Environmental contamination has been caused by nuclear-weapons production and testing, nuclear-reactor accidents, and accidents during the transport of nuclear weapons. Above-ground testing of more than 420 nuclear weapons has produced large amounts of radionuclides through fission and neutron activation products. More than three metric tons of plutonium have been distributed on the earth's surface by global fallout. For example, the MAYAK plutonium production complex in the former Soviet Union is located in the southern Urals, about 70 km north of Chelyabinsk and 15 km east of Kyshtym. Between 1949 and 1951, about 76 million m3 of liquid radioactive waste with a total activity of 100 PBq (2.7 MCi) were discharged into the Techa River.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kiefer, H. and Koelzer, W., Strahlen und Strahlenschutz (Springer-Verlag, Berlin, 1987) p.74.CrossRefGoogle Scholar
2.Aarkrog, A., Tsaturov, Y., and Polikarpov, G.G., Sources to Environmental Radioactive Contamination in the Former USSR, European Commission Report No. XI-095/93, Radiation Protection 71 (European Commission, Brussels, 1994).Google Scholar
3.Myasoedov, B.F. and Drozhko, E.G., J. Alloys Compd. 271–273 (1998) p.216.Google Scholar
4.Crowley, K.D., Phys. Today 50 (1997) p.32.Google Scholar
5.Linking Legacies—Connecting the Cold War Nuclear Weapons-Production Processes to Their Environmental Consequences, Report (U.S. Department of Energy, Office of Environmental Management, Washington, DC, 1997) p.36.Google Scholar
6.Jones, S.R. and McDonald, P., Status of the Restoration of Contaminated Sites in Europe, European Commission Report No.94-PR-014, Radiation Protection 90, edited by Zeevaert, T., Vanmarcke, H., and Govaerts, P. (European Commission, Brussels, 1997) p.56.Google Scholar
7.Jones, S.R. and McDonald, P., The Inventory of Long-Lived Artificial Radionuclides in the Irish Sea and Their Radiological Significance, European Commission Report No. XI-5027/94, Radiation Protection 74, Vol. 1 (European Commission, Brussels, 1994) p.153.Google Scholar
8.The Environmental and Biological Behavior of Plutonium and Some Other Transuranium Elements, OECD Nuclear Energy Agency Report (Organization for Economic Cooperation and Development, Paris, 1981).Google Scholar
9.Katz, J.J., Seaborg, G.T., and Morss, L.R., The Chemistry of the Actinide Elements, 2nd ed., Vol.2 (Chapman & Hall, New York, 1986) p.1139.Google Scholar
10.Choppin, G.R., Radiochim. Acta 43 (1988) p.82.Google Scholar
11.Kobashi, A., Choppin, G.R., and Morse, J.W., Radiochim. Acta 43 (1988) p.211.CrossRefGoogle Scholar
12.Choppin, G.R., Bond, A.H., and Hromadka, P.M., J. Radioanal. Nucl. Chem. 219 (2)(1997) p.203.CrossRefGoogle Scholar
13.Nash, K.L., Cleveland, J.M., and Rees, T.F., J.Environ. Radioact. 7 (1988) p.131.CrossRefGoogle Scholar
14.Bertrand, P.A. and Choppin, G.R., Radiochim. Acta 31 (1982) p.135.CrossRefGoogle Scholar
15.Schramke, J.A., Rai, D., Fulton, R.W., and Choppin, G.R., J. Radioanal. Nucl. Chem. 130 (2) (1989) p.333.Google Scholar
16.Saito, A. and Choppin, G.R., Anal. Chem. 55 (1983) p.2454.Google Scholar
17.Nitsche, H., Lee, S.C., and Gatti, R.C., J.Radio-anal. Nucl. Chem. 124 (1)(1988) p.171.CrossRefGoogle Scholar
18.Nitsche, H., Roberts, K., Xi, R., Prussin, T., Becraft, K., Al, I. Mahamid, Silber, H., Carpenter, S.A., Gatti, R.C., and Novak, C.F., Radio-chim. Acta 66/67 (1994) p.3.Google Scholar
19.Rossotti, F.J.C. and Rossotti, H.S., The Determination of Stability Constants (McGraw-Hill, New York, 1961).Google Scholar
20.Bauman, R.P., Absorption Spectroscopy (John Wiley & Sons, New York, 1962) p.19.Google Scholar
21.Keller, C., The Chemistry of the Transuranium Elements (Verlag Chemie, Weinheim, Germany, 1971) p.94.Google Scholar
22.Katz, J.J., Seaborg, G.T., and Morss, L.R., The Chemistry of the Actinide Elements, 2nd ed., Vol.2 (Chapman & Hall, New York, 1986) p.1257.Google Scholar
23.Bauman, R.P., Absorption Spectroscopy (John Wiley & Sons, New York, 1962) p.368.Google Scholar
24.Cetorelli, J.J. and Winefordner, J.D., Talanta 14 (1967) p.705.Google Scholar
25.Swafford, R.L., in Lasers in Chemical Analysis, edited by Hieftje, G.M., Travis, J.C., and Lytle, F.E. (Humana Press, West Lafayette, IN, 1981) p.143.Google Scholar
26.Tam, A.C., Rev. Mod. Phys. 58 (1986) p.381.Google Scholar
27.Jackson, W.B., Amer, N.M., Boccara, A.C., and Fournier, D., Appl. Opt. 20 (1981) p.1333.Google Scholar
28.Fang, H.L. and Swafford, R.L., in Ultra-sensitive Laser Spectroscopy, edited by Kliger, D.S. (Academic Press, New York, 1983) p.175.Google Scholar
29.Torres, R.A., Palmer, C.A., Baisden, P.A., Russo, R.E., and Silva, R.J., Anal. Chem. 62 (3) (1990) p.298.CrossRefGoogle Scholar
30.Hobart, D.E., in Proc. Robert A. Welch Foundation Conf. Chem. Res. XXXIV (The Welch Foundation, Houston, 1990) p.379.Google Scholar
31.Allard, B., in Proc. Actinide-1981 Conf., edited by Edelstein, N. (Pergamon Press, London, 1981) p.553.Google Scholar
32.Nguyen, S.N., Silva, R.J., Weed, H.C., and Andrews, J.E., J. Chem. Thermodyn. 24 (1992) p.359.CrossRefGoogle Scholar
33.Katz, J.J., Seaborg, G.T., and Morss, L.R., The Chemistry of the Actinide Elements, 2nd ed., Vol.2 (Chapman & Hall, New York, 1986) p.1135.Google Scholar
34.Katz, J.J., Seaborg, G.T., and Morss, L.R., The Chemistry of the Actinide Elements, 2nd ed., Vol.2 (Chapman & Hall, New York, 1986) p.1164.Google Scholar
35.and, D.C. KonigsbergerPrins, R., X-ray Absorption, Principles, Application, Techniques of EXAFS, SEXAFS and XANES (Wiley & Sons, New York, 1988).Google Scholar
36.Bucher, J.J., Allen, P.G., Edelstein, N.M., Shuh, D.K., Madden, N., Pehl, D., Cork, C., and Malone, D., Rev. Sci. Instrum. 67 (9)(1996) p.4.CrossRefGoogle Scholar
37.Nitsche, H., J.Alloys Compd. 223 (1995) p.276.Google Scholar
38.Nitsche, H., Reich, T., Hennig, C., Rossberg, A., Geipel, G., Denecke, M.A., Baraniak, L., Panak, P., Abraham, A., Mack, B., Selenska-Pobell, S., and Bernhard, G., in Proc. Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, edited by Edel-stein, N., Nitsche, H., and Reich, T. (Nuclear Energy Agency, OCED, Issy-les-Moulineaux, France, 1999) p.15.Google Scholar
39.Allen, P.G., Bucher, J.J., Denecke, M.A., Edelstein, N.M., Kaltsoyannis, N., Nitsche, H., Reich, T., and Shuh, D.K., in Synchrotron Radiation Techniques in Industrial, Chemical and Materials Science, edited by D'Amico, K.L., Terminello, L.J., and Shuh, D.K. (Plenum Press, New York, 1996) p.169.CrossRefGoogle Scholar
40.Allen, P.G., Shuh, D.K., Bucher, J.J., Edelstein, N.M., Palmer, C.E.A., Silva, R.J., Nguyen, S.N., Marquez, L.N., and Hudson, E.A., Radiochim. Acta 75 (1996) p.47.CrossRefGoogle Scholar
41.Bertsch, P.M., Hunter, D.B., Sutton, S.R., Bajt, S., and Rivers, M.L., Environ. Sci. Technol. 28 (1994) p.980.Google Scholar
42.Denecke, M., in Proc. Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, edited by Edel-stein, N., Nitsche, H., and Reich, T. (Nuclear Energy Agency, OCED, Issy-les-Moulineaux, France, 1999) p.135.Google Scholar
43.Reich, T., Moll, H., Denecke, M.A., Geipel, G., Bernhard, G., Nitsche, H., Allen, P.G., Kaltsoy-annis, N., Bucher, J.J., Edelstein, N.M., and Shuh, D.K., “Characterization of Hydrous Uranyl Silicate by EXAFS Analysis,” presented at the Fifth International Conference on Migration of Actinides and Fission Products in the Geosphere, Saint-Malo, France, 1995.Google Scholar
44.Conradson, S.D., Mahamid, I. Al, Clark, D.L., Hess, N.J., Hudson, E.A., Neu, M.P., Palmer, P.D., Runda, W.H., and Tait, C.D., Polyhedron 17 (4)(1998) p.599.Google Scholar
45.Conradson, S.D., Appl. Spectrosc. 52 (1998) p.252A.Google Scholar
46.Means, J.L., Crerar, D.A., and Duguid, J.O., Science 200 (1978) p.1477.Google Scholar
47.Cleveland, J.M. and Rees, T.F., Science 212 (1981) p.1506.Google Scholar
48.Kim, J.I. and Buckau, G., Characterization of Reference and Site-Specific Humic Acids, Report RCM-02188 (Institute of Radiochemistry, Tech-nische Universität München, Germany, 1988).Google Scholar
49.Kim, J.I., Buckau, G., Li, G.H., Duschner, H., and Psarros, N., Fresen. J.Anal. Chem. 338 (1990) p.245.CrossRefGoogle Scholar
50.McCarthy, P., in Aquatic Humic Substances, Adv. Chem. Ser. 219, edited by Suffet, I. and MacCarthy, P. (American Chemical Society, Washington, DC, 1989) p.17.Google Scholar
51.Choppin, G.R., Radiochim. Acta 44/45 (1988) p.23.Google Scholar
52.Choppin, G.R., Radiochim. Acta 58/59 (1992) p.113.CrossRefGoogle Scholar
53.Choppin, G.R. and Allard, B., in Handbook on the Physics and Chemistry of the Actinides, Vol. 3, edited by Freeman, A.J. and Keller, C. (Elsevier Science Publishers, Amsterdam, 1985) p.407.Google Scholar
54.Schnitzer, M. and Khan, S.U., in Humic Substances in the Environment, edited by McLaren, A.D. (Marcel Dekker, New York, 1972).Google Scholar
55.Christman, R.F., Norwood, D.L., Seo, Y., and Frimmel, F.H., in Humic Substances II: In Search of Structure, edited by Hayes, M., MacCarthy, B., Malcolm, R., and Swift, R. (Wiley and Sons, Chichester, England, 1989) p.61.Google Scholar
56.Pace, N.R., Science 276 (1997) p.734.Google Scholar
57.Service, R.F., Science 275 (1997) p.1740.CrossRefGoogle Scholar
58.Borneman, J. and Triplett, E.W., Appl. Environ. Microbiol. 63 (7)(1997) p.2647.Google Scholar
59.West, J.M., McKinley, I.G., and Chapman, N.A., Radioact. Waste Mgt. Nucl. Fuel Cycle 3 (1) (1982) p.1.Google Scholar
60.West, J.M., Christofi, N., and McKinley, I.G., Radioact. Waste Mgt. Nucl. Fuel Cycle 6 (1) (1985) p.79.Google Scholar
61.Adams, M.W.W. and Kelly, R.M., Chem. Eng. News (December 18, 1995) p.32.Google Scholar
62.Macaskie, L.E., Crit. Rev. Biotechnol. 11 (1) (1991) p.41.Google Scholar
63.Francis, A.J., Experientia 46 (1990) p.840.CrossRefGoogle Scholar
64.Lovley, D.R., Ann. Rev. Microbiol. 47 (1993) p.263.Google Scholar
65.Francis, A.J., J. Alloys Compd. 213/214 (1994) p.226.Google Scholar
66.Rawling, D.E. and Silver, S., Bio-Technol. 13 (8)(1995) p.773.Google Scholar
67.Francis, A.J., J.Alloys Compd. 271–273 (1998) p.78.CrossRefGoogle Scholar
68.Brainard, J.R., Strietelmeier, B.A., Smith, P.H., Langston-Unkefer, P.J., Barr, M.E., and Ryan, R.R., Radiochim. Acta 58/59 (1992) p.357.Google Scholar
69.Whisenhunt, D.W. Jr, Neu, M.P., Hou, Y., Xu, J., Hoffman, D.C., and Raymond, K.N., Inorg. Chem. 35 (1996) p.4128.Google Scholar
70.Bouby, M., Billard, I., MacCordick, J., and Rossini, I., Radiochim. Acta 80 (1998) p.95.CrossRefGoogle Scholar
71.Bouby, M., Billard, I., and MacCordick, J., J.Alloys Compd. 271–273 (1998) p.206.Google Scholar
72.Panak, P., Selenska-Pobell, S., Kutschke, S., Geipel, G., Bernhard, G., and Nitsche, H., Radiochim. Acta 84 (1999) p.183.Google Scholar
73.Panak, P., Hard, B.C., Pietzsch, K., Kutschke, S., Röske, K., Selenska-Pobell, S., Bernhard, G., and Nitsche, H., J.Alloys Compd. 271–273 (1998) p.262.Google Scholar
74.Nitsche, H. and Silva, R.J., Radiochim. Acta 72 (1996) p.65.Google Scholar
75.Bennett, D.A., Hoffman, D., Nitsche, H., Russo, R.E., Torres, R.A., Baisden, P.A., Andrews, J.E., Palmer, C.E.A., and Silva, R.J., Radiochim. Acta 56 (1992) p.15.CrossRefGoogle Scholar
76.Allen, P.G., Veirs, D.K., Conradson, S.D., Smith, C.A., and Marsh, S.F., Inorg. Chem. 35 (1996) p.2841.Google Scholar
77.Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M., and Reich, T., Inorg. Chem. 36 (1997) p.4676.Google Scholar
78.Reich, T., Denecke, M.A., Pompe, S., Bubner, M., Heise, K.-H., Schmidt, M., Brendler, V., Baraniak, L., Nitsche, H., Allen, P.G., Bucher, J.J., Edel-stein, N.M., and Shuh, D.K., in Synchrotron Radiation Techniques in Industry, Chemical and Material Science, edited by D'Amico, K.L., Terminello, L.J., and Shuh, D.K. (Plenum Press, New York, 1996) p.215.Google Scholar
79.Denecke, M.A., Pompe, S., Reich, T., Moll, H., Bubner, M., Heise, K.H., Nicolai, R., and Nitsche, H., Radiochim. Acta 79 (1997) p.151.Google Scholar
80.Denecke, M.A., Reich, T., Bubner, M., Pompe, S., Heise, K.H., Nitsche, H., Allen, P.G., Edel-stein, N.M., and Shuh, D.K., J. Alloys Compd. 271–273 (1998) p.123.Google Scholar
81.Reich, T., Hudson, E.A., Denecke, M.A., Allen, P.G., and Nitsche, H., Surf. Invest. 13 (1998) p.557.Google Scholar
82.Stumm, W. and Morgan, J.J., Aquatic Chemistry, 2nd ed. (John Wiley & Sons, New York, 1981) p.599.Google Scholar
83.Hayes, K.F., Redden, G., Ela, W., and Leckie, J.O., Application of Surface Complexation Models for Radionuclide Adsorption, PNLReport No.7239 (Pacific Northwest Laboratory, Richland, WA, 1989).Google Scholar
84.Davis, J.A., James, R.O., and Leckie, J.O., J.Colloid Interface Sci. 63 (3)(1978) p.480.Google Scholar
85.Yates, D.E., Levine, S., and Healy, T.W., J. Chem. Soc. Faraday Trans. 1 170 (1974) p.1807.CrossRefGoogle Scholar
86.Pabalan, R.T. and Turner, D.R., in Aquat. Geochem. 2 (3)(1997) p.203.Google Scholar
87.Turner, D.R., Pabalan, R.T., and Bertetti, F.P., Clays Clay Miner. 46 (3)(1998) p.256.Google Scholar
88.Duff, M.C., Hunter, D.B., Triay, I.R., Bertsch, P.M., Reed, D.T., Sutton, S.R., Shea-McCarthy, G., Kitten, J., Eng, P., Chipera, S.J., and Vaniman, D.T., Environ. Sci. Technol. 33 (1999) p.2163.Google Scholar
89.Combes, J., Chisholm-Brause, C., Brown, G.E. Jr, Parks, G.A., Conradson, S.D., Eller, P.G., Triay, I.R., Hobart, D.E., and Meijer, A., Environ. Sci. Technol. 26 (2)(1992) p.376.Google Scholar
90.Reich, T., Moll, H., Denecke, M.A., Hennig, C., Geipel, G., Bernhard, G., Nitsche, H., Allen, P.G., Bucher, J.J., Edelstein, N.M., and Shuh, D.K., in Proc. Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, edited by Edelstein, N., Nitsche, H., and Reich, T. (Nuclear Energy Agency, OCED, Issy-les-Moulineaux, France, 1999) p.83.Google Scholar
91.Brown, G.E., Henrich, V.E., Casey, W.H., Clark, D.L., Eggleston, C., Felmy, A., Goodman, D.W., Grätzel, M., Maciel, G., McCarthy, M.I., Nealson, K.H., Sverjensky, D.A., Toney, M.F., and Zachara, J.M., Chem. Rev. 99 (1999) p.77.Google Scholar
92.and, J.F. McCarthyZachara, J.M., Environ. Sci. Technol. 23 (5)(1989) p.496.Google Scholar
93.Orlandini, K.A., Penrose, W.R., Harvey, B.R., Lovett, M.B., and Findlay, M.W., Environ. Sci. Technol. 24 (5)(1990) p.706.Google Scholar
94.Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L., Nature 397 (1999) p.56.Google Scholar
95.Avogadro, A. and Marsily, G. De, in Scientific Basis for Nuclear Waste Management VII, edited by McVay, G.L. (Mater. Res. Soc. Symp. Proc. 26, North-Holland, New York, 1984) p.495.Google Scholar
96.Ramsay, D.A., Radiochim. Acta 44/45 (1988) p.165.Google Scholar