Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:25:43.144Z Has data issue: false hasContentIssue false

Enhanced Diffusion in Silicon Processing

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Semiconductor-grade silicon is one of the most perfect crystalline materials that can be fabricated. It contains less than 1 ppb of unintended impurities and negligible twins or dislocations. Dopants can diffuse in this near-ideal crystal only by interacting with atomic-scale point defects: interstitial atoms or vacancies. These defects migrate through the silicon lattice, occasionally binding with a dopant atom and displacing it by one or more lattice positions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61 (1989) p. 289.Google Scholar
2.Cowern, N.E.B., Janssen, K.T.F., van de Walle, G.F.A., and Gravesteijn, D.J., Phys. Rev. Lett. 65 (1990) p. 2434.CrossRefGoogle Scholar
3.Cowern, N.E.B., van de Walle, G.F.A., Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. (1991).Google Scholar
4.Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., van Berkum, J.G.M., Cristiano, F., Claverie, A., and Jaraíz, M., Phys. Rev. Lett. 82 (1999) p. 4460.Google Scholar
5.Rafferty, C.S., Vuong, H.-H., Eshraghi, S.A., Giles, M.D., Pinto, M.R., and Hillenius, S.J., IEEE Int. Electron Devices Meet. ‘93 Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993) p. 311.Google Scholar
6.Wills, G.N., Solid-State Electron. 12 (1969) p. 133.Google Scholar
7.Masetti, G., Solid-State Electron. 16 (1973) p. 1419.Google Scholar
8.Masetti, G., Solmi, S., and Soncini, G., Philos. Mag. 33 (1976) p. 613.CrossRefGoogle Scholar
9.Antoniadis, D.A., Lin, A.M., and Dutton, R.W., Appl. Phys. Lett. 33 (1978) p. 1030.Google Scholar
10.Taniguchi, K., Kurosawa, K., and Kashiwagi, M., J. Electrochem. Soc. 127 (1980) p. 2243.Google Scholar
11.Lin, A.M.-R., Antoniadis, D.A., and Dutton, R.W., J. Electrochem. Soc. 128 (1981) p. 1131.Google Scholar
12.Packan, P.A. and Plummer, J.D., J. Appl. Phys. 68 (1990) p. 4327.CrossRefGoogle Scholar
13.Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 20 (1981) p. 739.Google Scholar
14.Mizuo, S., Kusaka, T., Shintani, A., Nanba, M., and Higuchi, H., J. Appl. Phys. 54 (1983) p. 3860.CrossRefGoogle Scholar
15.Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R.W., Appl. Phys. Lett. 46 (1985) p. 784.Google Scholar
16.Hu, S.M., J. Appl. Phys. 45 (1974) p. 1567.Google Scholar
17.Jaccodine, R.J. and Drum, C.M., Appl. Phys. Lett. 8 (1966) p. 29.Google Scholar
18.Herner, S.B., Gossmann, H.-J., and Tung, R.T., Appl. Phys. Lett. 72 (1998) p. 2289.Google Scholar
19.Michel, A.E., Nucl. Instrum. Methods B 37/38 (1989) p. 379.Google Scholar
20.Cowern, N.E.B., Janssen, K.T.F., and Jos, H.F.F., J. Appl. Phys. 68 (1990) p. 6191.CrossRefGoogle Scholar
21.Packan, P.A. and Plummer, J.D., Appl. Phys. Lett. 56 (1990) p. 1787.Google Scholar
22.Chao, H., Rafferty, C.S., Griffin, P.B., and Plummer, J.D., Appl. Phys. Lett. 69 (1996) p. 2113.CrossRefGoogle Scholar
23.Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Oostra, D.J., Phys. Rev. Lett. 69 (1992) p. 116.Google Scholar
24.Libertino, S., Benton, J.L., Coffa, S., Jacobson, D.C., Eaglesham, D.J., Poate, J.M., Lavalle, M., and Fuochi, P.G., in Defects and Diffusion in Silicon Processing, edited by de la Rubia, T. Diaz, Coffa, S., Stolk, P.A., and Rafferty, C.S. (Mater. Res. Soc. Symp. Proc. 469, Pittsburgh, 1997) p. 187.Google Scholar
25.Giles, M.D., J. Electrochem. Soc. 138 (1991) p. 285.CrossRefGoogle Scholar
26.Giles, M.D., Yu, S., Kennel, H.W., and Packan, P.A., in Defects and Diffusion in Silicon Processing, edited by de la Rubia, T. Diaz, Coffa, S., Stolk, P.A., and Rafferty, C.S. (Mater. Res. Soc. Symp. Proc. 469, Pittsburgh, 1997) p. 253.Google Scholar
27.Jones, K.S., presented at Symposium E, Materials Research Society Meeting, San Francisco, April 1, 1997.Google Scholar
28.Libertino, S., Coffa, S., Benton, J.L., Halliburton, K., and Eaglesham, D.J., Nucl. Instrum. Methods Phys. Res., Sect. B 148 (1998) p. 247.Google Scholar
29.Benton, J.L., Libertino, S., Kringhoj, P., Eaglesham, D.J., Poate, J.M., and Coffa, S., J. Appl. Phys. 82 (1997) p. 120.Google Scholar
30.Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65 (1994) p. 2305.CrossRefGoogle Scholar
31.Salisbury, I.G. and Loretto, M.H., Philos. Mag. A 39 (1979) p. 317.CrossRefGoogle Scholar
32.Takeda, S., Jpn. J. Appl. Phys., Part 2: Lett. 30 (1991) p. L639.Google Scholar
33.Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65 (1994) p. 2981.Google Scholar
34.Cuendet, N., Halicioglu, T., and Tiller, W.A., Appl. Phys. Lett. 68 (1996) p. 19.CrossRefGoogle Scholar
35.Kohyama, M. and Takeda, S., Phys. Rev. B 46 (1992) p. 12305; Phys. Rev. B 51 (1995) p. 13111.CrossRefGoogle Scholar
36.Lim, D.R., Rafferty, C.S., and Klemens, F.P., Appl. Phys. Lett. 67 (1995) p. 2302.Google Scholar
37.Cowern, N.E.B., Alquier, D., Omri, M., Claverie, A., and Nejim, A., Nucl. Instrum. Methods B 148 (1998) p. 257.Google Scholar
38.Solmi, S., Cembali, F., Fabbri, R., Servidori, M., and Canteri, R., Appl. Phys. A 48 (1989) p. 255.CrossRefGoogle Scholar
39.Claverie, A., Laânab, L., Bonafos, C., Bergaud, C., Martinez, A., and Mathiot, D., Nucl. Instrum. Methods Phys. Res., Sect. B 96 (1995) p. 202.CrossRefGoogle Scholar
40.Bonafos, C., Mathiot, D., and Claverie, A., J. Appl. Phys. 83 (1998) p. 3008.Google Scholar
41.Omri, M., de Mauduit, B., and Claverie, A., in Si Front-End Processing—Physics and Technology of Dopant-Defect Interactions, edited by Gossmann, H.-J.L., Haynes, T.E., Law, M.E., Larsen, A. Nylandsted, and Odanaka, S. (Mater. Res. Soc. Symp. Proc. 568, Warrendale, PA, 1999) p. 219.Google Scholar
42. An interesting 4-interstitial structure has already been identified from theory in Arai, A. and Takeda, S., Phys. Rev. Lett. 78 (1997) p. 4265, and several research groups are now investigating clusters with larger numbers of atoms.CrossRefGoogle Scholar
43.Rousseau, P.M., Griffin, P.B., and Plummer, J.D., Appl. Phys. Lett. 65 (1994) p. 578.Google Scholar
44.Crowder, S.W., Rousseau, P.M., Snyder, J.P., Scott, J.A., Griffin, P.B., and Plummer, J.D., IEEE Int. Electron Devices Meet. ‘95 Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995) p. 427.Google Scholar
45.Seidel, T.E. and MacRae, U., Radiat. Eff. 7 (1971) p. 1.Google Scholar
46.Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Poate, J.M., and Luftman, H.S., Appl. Phys. Lett. 66 (1995) p. 568.CrossRefGoogle Scholar
47.Pelaz, L., Jaraíz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett. 70 (1997) p. 2285.CrossRefGoogle Scholar
48.Pelaz, L.A., Venezia, V.C., Gossmann, H.-J., Gilmer, G.H., Fiory, A.T., Rafferty, C.S., Jaraíz, M., and Barbolla, J., Appl. Phys. Lett. 75 (1999) p. 662.CrossRefGoogle Scholar
49.Mannino, G., Cowern, N.E.B., Roozeboom, F., and van Berkum, J.G.M., Appl. Phys. Lett. 76 (7) in press.Google Scholar
50.van Dort, M.J., van der Wel, W., Slotboom, J.W., Cowern, N.E.B., Knuvers, M.P.G., Lifka, H., and Zalm, P.C., IEEE Int. Electron Devices Meet. ‘94 Tech. Dig. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1994) p. 865.Google Scholar
51.King, C.A., Johnson, R.W., Pinto, M.R., Luftman, H.S., and Munanka, J., Appl. Phys. Lett. 68 (2) (1996) p. 226.Google Scholar