Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T18:12:59.525Z Has data issue: false hasContentIssue false

Emergence of Chalcopyrites as Nonlinear Optical Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Chalcopyrite nonlinear optical (NLO) semiconductors are presently enjoying a major renaissance. This rebirth of interest is due primarily to the success of recent materials research-and-development (R&D) programs that have dramatically improved the availability of large crackfree high-quality crystals. This overview provides a general review of chalcopyrites, of their application in laser systems that exploit second-harmonic generation (SHG) or optical parametric oscillation (OPO), and of the materials-selection criteria for laser crystals to assist in focusing R&D efforts. It also suggests broader application areas. The overview concludes with a number of specific recommendations for further R&D efforts to advance this materials technology.

The archetype infrared NLO chalcopyrites are AgGaSe2 (a I-III-VI2 semiconductor) and ZnGeP2 (a II-IV-V2 semiconductor). Using samples of naturally occurring pyrites, Pauling correctly established the chalcopyrite's crystal structure (diamondlike where Zn and Ge cations are ordered) in 1932 after two previous false starts by others. Levine, who has extensively studied the nonlinear susceptibilities of a number of bond types, stated in 1973 that the chalcopyrite structure is so favorable for NLO properties that it will be difficult to ever find materials with larger nonlinearities in the infrared spectral region. That statement has proved to be prophetic.

Goodman of Great Britain first reported that chalcopyrites were semiconductors. However the first observation that these materials were semiconductors is generally attributed to A.F. Ioffe and N. A. Goryunova of the A.F. Ioffe Physico-Technical Institute (IPT) in St Petersburg, Russia.

Type
Emergence of Chalcopyrites as Nonlinear Optical Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pauling, L. and Brockway, L., Z. Krist. Abt. A 82 (1932) p. 188.Google Scholar
2.Levine, B.F., Phys. Rev. B 7 (1973) p. 2600.CrossRefGoogle Scholar
3.Goodman, C.H.L. and Doublas, R.W., Physica 20 (1954) p. 1107.CrossRefGoogle Scholar
4.Goodman, C.H.L., Nature 179 (1957) p. 828.CrossRefGoogle Scholar
5.Shileika, A., Surf. Sci. 37 (1973) p. 730.CrossRefGoogle Scholar
6.Shay, J.L. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, New York, 1975) p. 168.Google Scholar
7.Mott, N., in Proc. Int. Conf. on The Physics of Semiconductors (The Institute of Physics and The Physical Society, Exeter, London, 1962).Google Scholar
8.Goryunova, N.A., The Chemistry of Diamond-like Semiconductors (MIT Press, Cambridge, 1965).Google Scholar
9.Bhar, G.C., Jpn. J. Appl. Phys. 32, Suppl. 32–3 (1993) p. 653.CrossRefGoogle Scholar
10.Brudnyi, V.N., Budnitskii, D.L., Krivov, M.A., Masagutova, R.V., Prochukhan, V.D., and Rud, Yu.V., Phys. Status Solidi A 50 (1978) p. 379.CrossRefGoogle Scholar
11.Brudnyi, V.N., Krivov, M.A., Potapov, A.I., Polushina, I.K., Prochukhan, V.D., and Rud', Yu.V.Phys. Status Solidi A 49 (1978) p. 761.CrossRefGoogle Scholar
12.Rud', Yu.V. and Masagutova, R.V., Sov. Tech. Phys. Lett. 7 (1974) p. 72.Google Scholar
13.Jackson, A.G., Ohmer, M.C., and LeClair, S.R., Infrared Phys. Technol. 38 (1997) p. 233.CrossRefGoogle Scholar
14.Dmitriev, V.G., Gurzadyan, G.G., and Nikogosyan, D.N., Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, Berlin, Heidelberg, 1991). (See also revised and updated 2nd ed., 1997.)CrossRefGoogle Scholar
15.Andreev, Yu.M., Voevodin, V.G., Gribenyukov, A.I., Zyryanov, O.Ya., Ippolitov, I.I., Morozov, A.N., Sosin, A.V., and Khmel'nitshii, G.S., Sov. J. Quantum Electron. 14 (1984) p. 1021.CrossRefGoogle Scholar
16.Boyd, G.D., Buehler, E., and Storz, F.G., Appl. Phys. Lett. 18 (1971) p. 301.CrossRefGoogle Scholar
17.Fischer, D.W., Ohmer, M.C., Schunemann, P.G., and Pollak, T.M., J. Appl. Phys. 77 (1995) p. 5942.CrossRefGoogle Scholar
18.Bhar, G.C., Das, S., and Chatterjee, U., Appl. Phys. Lett. 54 (1989) p. 313.CrossRefGoogle Scholar
19.Bhar, G.C., Das, S., Chatterjee, U., Datta, P.K., and Andreev, Yu.N., Appl. Phys. Lett. 63 (1993) p. 1316.CrossRefGoogle Scholar
20.Fischer, D.W. and Ohmer, M.C., J. Appl. Phys. 81 (1997) p. 425.CrossRefGoogle Scholar
21.Fischer, D.W., Ohmer, M.C., and McCrae, J.E., J. Appl. Phys. 81 (1997) p. 3579.CrossRefGoogle Scholar
22.Schunemann, P.G. (private communication).Google Scholar
23.Zapol, P., Pandey, R., Ohmer, M., and Gale, J., J. Appl. Phys. 79 (1996) p. 671.CrossRefGoogle Scholar
24.Borshchevskii, A.S., Goryunova, N.A., Osmanov, E.O., Polushina, I.K., Royenkov, N.D., and Smirova, A.D., Mater. Sci. Eng. 3 (1968/1969) p. 118.CrossRefGoogle Scholar
25.Smith, S.R., Evwaraye, A.O., and Ohmer, M.C., in Infrared Applications of Semiconductors II, edited by Sivananthan, S., Manasreh, M.O., Miles, R.H., and McDaniel, D.L. Jr. (Mater. Res. Soc. Symp. Proc. 484, Pittsburgh, 1998) p. 581.Google Scholar