Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:44:36.610Z Has data issue: false hasContentIssue false

Elevated-temperature creep of high-entropy alloys via nanoindentation

Published online by Cambridge University Press:  06 November 2019

P.H. Lin
Affiliation:
Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Taiwan; [email protected]
H.S. Chou
Affiliation:
National Sun Yat-sen University, Taiwan; [email protected]
J.C. Huang
Affiliation:
National Sun Yat-sen University, Taiwan; and City University of Hong Kong, Hong Kong; [email protected]
W.S. Chuang
Affiliation:
National Sun Yat-sen University, Taiwan; [email protected]
J.S.C. Jang
Affiliation:
Institute of Materials Science and Engineering, National Central University, Taiwan; [email protected]
T.G. Nieh
Affiliation:
The University of Tennessee, USA; and City University of Hong Kong, Hong Kong; [email protected]
Get access

Abstract

High-entropy alloys (HEAs) have been the focus of wide-ranging studies for their applications as next-generation structural materials. For high-temperature industrial applications, creep behavior of structural materials is critical. In addition to high-temperature tensile, compressive, and notched tests, elevated-temperature nanoindentation is a relatively new testing method for HEAs. With the high accuracy of depth-sensing technology and a stable temperature-controlling stage, elevated-temperature time-dependent mechanical behavior of HEAs can be investigated, especially at localized regions without the limitations of the standard specimen size used for traditional creep testing. Also, the creep response from each grain in polycrystalline samples with various crystalline orientations can be explored in detail. This article overviews current progress in studying creep behavior in HEAs via nanoindentation technology.

Type
High-Temperature Materials for Structural Applications
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y., Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., George, E.P., Acta Mater . 61, 2628 (2013).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Mater. Lett. 142, 153 (2015).CrossRefGoogle Scholar
Tsao, T.-K., Yeh, A.-C., Kuo, C.-M., Kakehi, K., Murakami, H., Yeh, J.-W., Jian, S.-R., Sci. Rep. 7, 12658 (2017).CrossRefGoogle Scholar
Fujieda, T., Shiratori, H., Kuwabara, K., Hirota, M., Kato, T., Yamanaka, K., Koizumi, Y., Chiba, A., Watanabe, S., Mater. Lett. 189, 148 (2017).CrossRefGoogle Scholar
Xiao, D.H., Zhou, P.F., Wu, W.Q., Diao, H.Y., Gao, M.C., Song, M., Liaw, P.K., Mater. Des. 116, 438 (2017).CrossRefGoogle Scholar
Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., Birbilis, N., npj Mater. Degrad. 1, 15 (2017).CrossRefGoogle Scholar
Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., Zhang, Y., Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle Scholar
Chuang, M.-H., Tsai, M.-H., Wang, W.-R., Lin, S.-J., Yeh, J.-W., Acta Mater . 59, 6308 (2011).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., George, E.P., Intermetallics 46, 131 (2014).CrossRefGoogle Scholar
Yao, M.J., Pradeep, K.G., Tasan, C.C., Raabe, D., Scr. Mater. 72–73, 5 (2014).CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., Hohenwarter, A., Acta Mater . 96, 258 (2015).CrossRefGoogle Scholar
Miracle, B.D., Miller, D.J., Senkov, N.O., Woodward, C., Uchic, D.M., Tiley, J., Entropy 16 (2014).CrossRefGoogle Scholar
Praveen, S., Kim, H.S., Adv. Eng. Mater. 20, 1700645 (2018).CrossRefGoogle Scholar
Modlinski, R., Witvrouw, A., Ratchev, P., Puers, R., den Toonder, J.M.J., De Wolf, I., Microelectron. Eng. 76, 272 (2004).CrossRefGoogle Scholar
Chavoshi, S.Z., Xu, S., MRS Commun . 8, 15 (2018).CrossRefGoogle Scholar
Tsai, M.T., Huang, J.C., Lin, P.H., Liu, T.Y., Liao, Y.C., Jang, J.S.C., Song, S.X., Nieh, T.G., Intermetallics 103, 88 (2018).CrossRefGoogle Scholar
Ma, Y., Peng, G.J., Wen, D.H., Zhang, T.H., Mater. Sci. Eng. A 621, 111 (2015).CrossRefGoogle Scholar
Lee, D.-H., Seok, M.-Y., Zhao, Y., Choi, I.-C., He, J., Lu, Z., Suh, J.-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., Jang, J.-i., Acta Mater . 109, 314 (2016).CrossRefGoogle Scholar
Wang, Z., Guo, S., Wang, Q., Liu, Z., Wang, J., Yang, Y., Liu, C.T., Intermetallics 53, 183 (2014).CrossRefGoogle Scholar
Lee, D.-H., Choi, I.-C., Yang, G., Lu, Z., Kawasaki, M., Ramamurty, U., Schwaiger, R., Jang, J.-i., Scr. Mater. 156, 129 (2018).CrossRefGoogle Scholar
Jiao, Z.M., Wang, Z.H., Wu, R.F., Qiao, J.W., Appl. Phys. A 122, 794 (2016).CrossRefGoogle Scholar
Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., Zhang, T.H., Int. J. Refract. Metals Hard Mater. 54, 395 (2016).CrossRefGoogle Scholar
Li, W.B., Henshall, J.L., Hooper, R.M., Easterling, K.E., Acta Metall. Mater. 39, 3099 (1991).CrossRefGoogle Scholar
He, L.Z., Zheng, Q., Sun, X.F., Guan, H.R., Hu, Z.Q., Tieu, A.K., Lu, C., Zhu, H.T., Metall. Mater. Trans. A 36, 2385 (2005).CrossRefGoogle Scholar
Cao, T., Shang, J., Zhao, J., Cheng, C., Wang, R., Wang, H., Mater. Lett. 164, 344 (2016).CrossRefGoogle Scholar
Tian, S., Su, Y., Qian, B., Yu, X., Liang, F., Li, A., Mater. Des. 37, 236 (2012).CrossRefGoogle Scholar
Knezevic, V., Schneider, A., Landier, C., Procedia Eng . 55, 240 (2013).CrossRefGoogle Scholar
Kim, W.J., Jeong, H.T., Park, H.K., Park, K., Na, T.W., Choi, E., J. Alloys Compd. 802, 152 (2019).CrossRefGoogle Scholar
Friedel, J., Dislocations (Pergamon Press, Oxford, UK, 1964).Google Scholar
Jeong, H.T., Park, H.K., Park, K., Na, T.W., Kim, W.J., Mater. Sci. Eng. A 756, 528 (2019).CrossRefGoogle Scholar
Bhattacharyya, A., Singh, G., Eswar Prasad, K., Narasimhan, R., Ramamurty, U., Mater. Sci. Eng. A 625, 245 (2015).CrossRefGoogle Scholar
Woo, C.H., Huang, H., Ngan, A.H.W., Yu, T., CMES Comp. Model. Eng. Sci. 6, 105 (2004).Google Scholar
Zou, Y., Wheeler, J.M., Ma, H., Okle, P., Spolenak, R., Nano Lett. 17, 1569 (2017).CrossRefGoogle Scholar
Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., Liu, R.P., Mater. Sci. Eng. A 655, 283 (2016).CrossRefGoogle Scholar
Ghosh, R.N., Bull. Mater. Sci. 17, 1341 (1994).CrossRefGoogle Scholar
Wen, Z., Zhang, D., Li, S., Yue, Z., Gao, J., J. Alloys Compd. 692, 301 (2017).CrossRefGoogle Scholar
Hu, T.Y., Zheng, B.L., Hu, M.Y., He, P.F., Yue, Z.F., Mater. Sci. Technol. 31, 325 (2015).CrossRefGoogle Scholar
Wu, Z., Gao, Y.F., Bei, H., Scr. Mater. 109, 108 (2015).CrossRefGoogle Scholar
Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Kuksgausen, I.V., Karaman, I., Mater. Sci. Eng. A 705, 176 (2017).CrossRefGoogle Scholar
He, J.Y., Zhu, C., Zhou, D.Q., Liu, W.H., Nieh, T.G., Lu, Z.P., Intermetallics 55, 9 (2014).CrossRefGoogle Scholar