Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:54:09.017Z Has data issue: false hasContentIssue false

Electron-Doped High Tc Superconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since the discovery of high temperature superconductivity in layered copper-oxide compounds in the latter part of 1986, an enormous amount of research has been carried out on these remarkable materials. Prior to 1989, the prevailing view was that the charge carriers responsible for superconductivity in these materials were holes that move through conducting CuO2 planes. The CuO2 planes are the basic building blocks of the crystal structures of all the presently known oxides with superconducting critical temperatures Tc greater than ~30 K. Recently, new superconducting materials have been discovered in Japan and the United States in which the charge carriers involved in the superconductivity appear to be electrons, rather than holes, that reside within the conducting CuO2 planes. These findings could have important implications regarding viable theories of high temperature superconductivity as well as strategies for finding new high temperature superconductors.

The new electron-doped materials have the chemical formula Ln2-xMxCuO4-y and exhibit superconductivity with superconducting critical temperatures Tc as high as ~25 K for x ≍ 0.15 and y ≍ 0.02. Superconductivity has been discovered for M = Ce and Ln = Pr, Nd, Sm, and Eu, and for M = Th and Ln = Pr, Nd, and Sm. A related compound with the identical crystal structure, Nd2CuO4-x-y Fx, has also been found to display superconductivity withTc ≍ 25 K. Recently, it has been observed that superconductivity with Tc ≍ 25 K can even be induced in nonsuperconducting Nd2-xCexCuO4-y compounds by substituting Ga or In for Cu. Thus, it appears that the CuO2 planes can be doped with electrons, rendering the Ln2CuO4-y parent compounds metallic and superconducting, by substituting electron donor elements at sites within, as well as outside, the CuO2 planes; i.e., by substituting (1) Ce4+ or Th4+ ions for Ln3+ ions; (2) F1- ions for O2- ions; and (3) Ga3+ or In3+ ions for Cu2+ ions.

Type
Properties of High Tc Superconductors
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J.G. and Müller, K.A., Z. Phys. B 64 (1986) p. 189.CrossRefGoogle Scholar
2.Sleight, A.W., Science 242 (1988) p. 1519.CrossRefGoogle Scholar
3.Tokura, Y., Takagi, H., and Uchida, S., Nature 337 (1989) p. 345.CrossRefGoogle Scholar
4.Markert, J.T. and Maple, M.B., Solid State Commun. 70 (1989) p. 145.CrossRefGoogle Scholar
5.James, A.C.W.P., Zahurak, S.M., and Murphy, D.W., Nature 338 (1989) p. 240.CrossRefGoogle Scholar
6.Khurana, A., Physics Today 42 (1989) p. 17.Google Scholar
7.Markert, J.T., Early, E.A., Bjørnholm, T., Ghamaty, S., Lee, B.W., Neumeier, J.J., Price, R.D., Seaman, C.L., and Maple, M.B., Physica C 158 (1989) p. 178.CrossRefGoogle Scholar
8.Early, E.A., Ayoub, N.Y., Beille, J., Markert, J.T., and Maple, M.B., Physica C 160 (1989) p. 320.CrossRefGoogle Scholar
9.Felner, I., Yaron, U., Yeshurun, Y., Yacoby, E.R., and Wolfus, Y., Phys. Rev. B 40 (1989) p. 11,366.CrossRefGoogle Scholar
10.Ayoub, N.Y., Early, E.A., Markert, J.T., Seaman, C.L., and Maple, M.B., to be published.Google Scholar
11. For a review, see Markert, J.T., Dalichaouch, Y., and Maple, M.B., in Physical Properties of High Temperature Superconductors I, edited by Ginsberg, D.M. (World Scientific, Singapore, 1989) p. 266.Google Scholar
12.Uemura, Y.J., Luke, G.M., Sternlieb, B.J., Le, L.P., Brewer, J.H., Kadono, R., Kiefl, R.F., Kreitzman, S.R., Riseman, T.M., Seaman, C.L., Neumeier, J.J., Dalichaouch, Y., Maple, M.B., Saito, G., and Yamochi, H., to be published in the Proceedings of the NATO Advanced Research Workshop on Dynamics of Magnetic Fluctuations in High Temperature Superconductors, Crete, October 1990 (Plenum, 1990).Google Scholar
13.Luke, G.M., Sternlieb, B.J., Uemura, Y.J., Brewer, J.H., Kadono, R., Kiefl, R.F., Kreitzman, S.R., Riseman, T.M., Gopalakrishnan, J., Sleight, A.W., Subramanian, M.A., Uchida, S., Takagi, H., and Tokura, Y., Nature 338 (1989) p. 49.CrossRefGoogle Scholar
14.Seaman, C.L., Ayoub, N.Y., Bjørnholm, T., Early, E.A., Ghamaty, S., Lee, B.W., Markert, J.T., Neumeier, J.J., Tsai, P.K., and Maple, M.B., Physica C 159 (1989) p. 391.CrossRefGoogle Scholar
15.Butera, A., Caneiro, A., Causa, M.T., Steren, L.B., Zysler, R., Tovar, M., and Oseroff, S.B., Physica C 160 (1989) p. 341.CrossRefGoogle Scholar
16.Torrance, J.B., Tokura, Y., Nazzal, A.I., Bezinge, A., Huang, T.C., and Parkin, S.S.P., Phys. Rev. Lett. 61 (1988) p. 1127.CrossRefGoogle Scholar
17.Ayoub, N.Y., Markert, J.T., Early, E.A., Seaman, C.L., Paulius, L.M., and Maple, M.B., Physica C 165 (1990) p. 469.CrossRefGoogle Scholar
18.Takagi, H., Uchida, S., and Tokura, Y., Phys. Rev. Lett. 62 (1989) p. 1197.CrossRefGoogle Scholar
19.Uchida, S., Takagi, H., and Tokura, Y., Physica C 162-164 (1989) p. 1677.CrossRefGoogle Scholar
20.Wang, Z.Z., Chien, T.R., Ong, N.P., Tarascon, J.M., and Wang, E., to be published.Google Scholar
21.Weidinger, A., Niedermayer, C., Golnik, A., Simon, R., Recknegal, E., Budnick, J.I., Chamberland, B., and Baines, C., Phys. Rev. Lett. 62 (1989) p. 102.CrossRefGoogle Scholar
22.Oguchi, T. and Obokata, T., J. Phys. Soc. Jpn. 27 (1969) p. 1111.CrossRefGoogle Scholar
23. For a review, see, Fisk, Z., Cheong, S-W., Thompson, J.D., Hundley, M.F., Schwarz, R.B., Kwei, G.H., and Schirber, J.E., Physica C 162-164 (1989) p. 1681.CrossRefGoogle Scholar
24.Liang, G., Chen, J., Croft, M., Ramanujacharay, K.V., Greenblatt, M., and Hegde, M., Phys. Rev. B 40 (1989) p. 2646.CrossRefGoogle Scholar
25.Uji, S., Shimoda, M., and Aoki, H., Jpn. J. Appl. Phys. 28 (1989) p. L804.CrossRefGoogle Scholar
26.Tranquada, J.M., Heald, S.M., Moodenbaugh, A.R., Liang, G., and Croft, M., Nature 337 (1989) p. 720.CrossRefGoogle Scholar
27.Fujimori, A., Tokura, Y., Eisaki, H., Takagi, H., Uchida, S., and Takayama-Muromachi, E., Phys. Rev. B, submitted.Google Scholar
28.Alp, E.E., Mini, S.M., Ramanathan, M., Dabrowski, B., Richards, D.R., and Hinks, D.G., Phys. Rev. B 40 (1989) p. 2617.CrossRefGoogle Scholar
29.Rajumon, M.K., Sarma, D.D., Vijayaraghavan, R., and Rao, C.N.R., Solid State Commun. 70 (1989) p. 875.CrossRefGoogle Scholar
30.Nücker, N., Adelmann, P., Alexander, M., Romberg, H., Nakai, S., Fink, J., Rietschel, H., Roth, G., Schmidt, H., and Spille, H., Z. Phys. B 75 (1989) p. 421.CrossRefGoogle Scholar
31.Massida, S., Hamada, N., Yu, J., and Freeman, A.J., Physica C 157 (1989) p. 571.CrossRefGoogle Scholar
32.Allen, J.W., Olsen, C.G., Maple, M.B., Kang, J.-S., Liu, L.Z., Park, J.-H., Anderson, R.O., Ellis, W.P., Markert, J.T., Dalichaouch, Y., and Liu, R., Phys. Rev. Lett. 64 (1990) p. 595.CrossRefGoogle Scholar
33.Grassman, A., Schlötterer, J., Ströbel, J., Klauda, M., Johnson, R.L., and Saemann-Ischenko, G., Physica C 162-164 (1989) p. 1383.CrossRefGoogle Scholar
34.Huang, T.C., Moran, E., Nazzal, A.I., Torrance, J.B., and Wang, P.W., Physica C 159 (1989) p. 625.CrossRefGoogle Scholar
35.Hor, P.H., Xue, Y.Y., Sun, Y.Y., Tao, Y.C., Huang, Z.J., Rabalais, W., and Chu, C.W., Physica C 159 (1989) p. 629.CrossRefGoogle Scholar
36.Maple, M.B., Ayoub, N.Y., Bjørnholm, T., Early, E.A., Ghamaty, S., Lee, B. W., Markert, J.T., Neumeier, J.J., and Seaman, C.L., Physica C 162-164 (1989) p. 296.CrossRefGoogle Scholar
37.Markert, J.T., Beille, J., Neumeier, J.J., Early, E.A., Seaman, C.L., Moran, T., and Maple, M.B., Phys. Rev. Lett. 64 (1990) p. 80.CrossRefGoogle Scholar
38.Griessen, R., Phys. Rev. B 36 (1987) p. 5284.CrossRefGoogle Scholar
39.Tanahashi, N., Iye, Y., Tamegai, T., Murayama, C., Môri, N., Yomo, S., Okazaki, N., and Kitazawa, K., Jpn. J. Appl. Phys. 28 (1989) p. L762.CrossRefGoogle Scholar
40.Aronson, M.C., Cheong, S-W., Garzon, F.H., Thompson, J.D., and Fisk, Z., Phys. Rev. B 39 (1989) p. 11,445.CrossRefGoogle Scholar
41.Maple, M.B., Dalichaouch, Y., Early, E.A., Lee, B.W., Markert, J.T., Neumeier, J.J., Seaman, C.L., Yang, K.N., and Zhou, H., Physica C 153-155 (1988) p. 858.CrossRefGoogle Scholar
42.Shirber, J.E., Morosin, B., and Ginley, D.S., Physica C 157 (1989) p. 237.CrossRefGoogle Scholar
43.Murayama, C., Môri, N., Yomo, S., Takagi, H., Uchida, S., and Tokura, Y., Nature 339 (1989) p. 293.CrossRefGoogle Scholar
44.Takahashi, H., Murayama, C., Yomo, S., Môri, N., Kishio, K., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26 (1987) p. L504.CrossRefGoogle Scholar
45.Hidaka, Y. and Suzuki, M., Nature 338 (1989) p. 635.CrossRefGoogle Scholar
46.Dalichaouch, Y., Lee, B.W., Seaman, C.L., Markert, J.T., and Maple, M.B., Phys. Rev. Lett. 64 (1990) p. 599.CrossRefGoogle Scholar
47.Yeshurun, Y. and Malozemoff, A.P., Phys. Rev. Lett. 60 (1988) p. 2202.CrossRefGoogle Scholar
48.Kambe, S., Naito, M., Kitazawa, K., Tanaka, I., and Kojima, H., Physica C, submitted.Google Scholar
49.Hake, R.R., Appl. Phys Lett. 10 (1967) p. 186.CrossRefGoogle Scholar
50.Anderson, P.W., Phys. Rev. Lett. 9 (1962) p. 309; Y.B. Kim, Rev. Mod. Phys. 36 (1964) p. 39.CrossRefGoogle Scholar
51.Klemm, R.A., Luther, A., and Beasley, M.R., Phys. Rev. B 12 (1975) p. 877.CrossRefGoogle Scholar
52.Coleman, R.V., Eiserman, G.K., Hillenius, S.J., Mitchell, A.T., and Vicent, J.L., Phys. Rev. B 27 (1983) p. 125.CrossRefGoogle Scholar
53.Rieck, C.T., Wölkhausen, Th., Fay, D., and Tewordt, L., Phys. Rev. B 39 (1989) p. 278.CrossRefGoogle Scholar
54.Hundley, M.F., Thompson, J.D., Cheong, S-W., and Fisk, Z., Physica C 158 (1989) p. 102.CrossRefGoogle Scholar
55. See, for example, Superconductivity in Ternary Compounds II, edited by Maple, M.B. and Fisher, O. (Springer-Verlag, New York, 1982).Google Scholar
56.Fischer, O., Ishikawa, M., Pelizzone, M., and Treyvaud, A., J. de Phys. Colloq. 40 (1979) p. C589.CrossRefGoogle Scholar