Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:41:57.971Z Has data issue: false hasContentIssue false

Electron Transport in Single-Walled Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Single-walled carbon nanotubes (SWNTs) are emerging as an important new class of electronic materials. Both metallic and semiconducting SWNTs have electrical properties that rival or exceed the best metals or semiconductors known. In this article, we review recent transport and scanning probe experiments that investigate the electrical properties of SWNTs.We address the fundamental scattering mechanisms in SWNTs, both in linear response and at high bias.We also discuss the nature and properties of contacts to SWNTs. Finally, we discuss device performance issues and potential applications in electronics and sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S. and Ichihashi, T., Nature 363 (1993) p. 603.Google Scholar
2. Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363 (1993) p. 605.CrossRefGoogle Scholar
3. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J., and Dekker, C., Nature 386 (1997) p. 474.Google Scholar
4. Bockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., and Smalley, R.E., Science 275 (1997) p. 1922.Google Scholar
5. Tans, S.J., Verschueren, R.M., and Dekker, C., Nature 393 (1998) p. 49.CrossRefGoogle Scholar
6. McEuen, P.L., Fuhrer, M.S., and Park, H.K., IEEE Trans. Nanotech. 1 (2002) p. 78.Google Scholar
7. Dekker, C., Physics Today 52 (1999) p. 22.CrossRefGoogle Scholar
8. Avouris, P., Acc. Chem. Res. 35 (2002) p. 1026.Google Scholar
9. Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
10. Nygård, J., Cobden, D.H., Bockrath, M., McEuen, P.L., and Lindelof, P.E., Appl. Phys. A 69 (1999) p. 297.CrossRefGoogle Scholar
11. Yao, Z., Dekker, C., and Avouris, P., in Topics in Applied Physics, Vol. 80, edited by Dresselhaus, M.S., Dresselhaus, G., and Avouris, P. (Springer-Verlag, Berlin, 2001) p. 147.Google Scholar
12. Liang, W., Bockrath, M., Bozovic, D., Hafner, J.H., Tinkham, M., and Park, H., Nature 411 (2001) p. 665.Google Scholar
13. Kong, J., Yenilmez, E., Tombler, T.W., Kim, W., Dai, H., Laughlin, R.B., Liu, L., Jayanthi, C.S., and Wu, S.Y., Phys. Rev. Lett. 87 106801 (2001).CrossRefGoogle Scholar
14. Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., and McEuen, P.L., Phys. Rev. Lett. 84 (2000) p. 6082.CrossRefGoogle Scholar
15. Kane, C.L., Mele, E.J., Lee, R.S., Fischer, J.E., Petit, P., Dai, H., Thess, A., Smalley, R.E., Verschueren, A.R.M., Tans, S.J., and Dekker, C., Europhys. Lett. 41 (1998) p. 683.CrossRefGoogle Scholar
16. Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., and Dai, H., Phys. Rev. Lett. 92 106804 (2004).CrossRefGoogle Scholar
17. Park, J.-Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Üstünel, H., Braig, S., Arias, T.A., Brouwer, P.W., and McEuen, P.L., Nano Lett. 4 (2004) p. 517.CrossRefGoogle Scholar
18. Yao, Z., Kane, C.L., and Dekker, C., Phys. Rev. Lett. 84 (2000) p. 2941.Google Scholar
19. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H J., Nature 424 (2003) p. 654.CrossRefGoogle Scholar
20. Yaish, Y., Park, J.-Y., Rosenblatt, S., Sazonova, V., Brink, M., and McEuen, P.L., Phys. Rev. Lett. 92 046401 (2004).CrossRefGoogle Scholar
21. Cobden, D.H., Bockrath, M., McEuen, P.L., Rinzler, A.G., and Smalley, R.E., Phys. Rev. Lett. 81 (1998) p. 681.Google Scholar
22. Dürkop, T., Brintlinger, T., and Fuhrer, M.S., in Structural and Electronic Properties of Molecular Nanostructures, AIP Conf. Proc. 633, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S. (American Institute of Physics, New York, 2002) p. 242.Google Scholar
23. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73 (1998) p. 2447.CrossRefGoogle Scholar
24. Martel, R., Derycke, V., Lavoie, C., Appenzeller, J., Chan, K.K., Tersoff, J., and Avouris, P., Phys. Rev. Lett. 87 256805 (2001).Google Scholar
25. McEuen, P.L., Bockrath, M., Cobden, D.H., Yoon, Y.-G., and Louie, S.G., Phys. Rev. Lett. 83 (1999) p. 5098.Google Scholar
26. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294 (2001) p. 1317.Google Scholar
27. Park, J. and McEuen, P.L., Appl. Phys. Lett. 79 (2001) p. 1363.Google Scholar
28. Javey, A., Shim, M., and Dai, H., Appl. Phys. Lett. 80 (2002) p. 1064.CrossRefGoogle Scholar
29. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P., Phys. Rev. Lett. 89 106801 (2002).Google Scholar
30. Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., and Avouris, P., Phys. Rev. Lett. 89 126801 (2002).CrossRefGoogle Scholar
31. Chen, R.J., Franklin, N.R., Jing, K., Jien, C., Tombler, T.W., Yuegang, Z., and Dai, H., Appl. Phys. Lett. 79 (2001) p. 2258.Google Scholar
32. Kim, W., Javey, A., Vermesh, O., Wang, O., Li, Y.M., and Dai, H.J., Nano Lett. 3 (2003) p. 193.Google Scholar
33. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H., Science 287 (2000) p. 622.CrossRefGoogle Scholar
34. Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A., Science 287 (2000) p. 1801.Google Scholar
35. Bockrath, M., Hone, J., Zettl, A., McEuen, P.L., Rinzler, A.G., and Smalley, R.E., Phys. Rev. B 61 (2000) p. R10606.CrossRefGoogle Scholar
36. Kong, J., Zhou, C., , Y.E., and Dai, H., Appl. Phys. Lett. 77 (2000) p. 3977.Google Scholar
37. Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Nano Lett. 1 (2001) p. 453.Google Scholar
38. Zhou, C., Kong, J., Yenilmez, E., and Dai, H., Science 290 (2000) p. 1552.CrossRefGoogle Scholar
39. Kong, J., Cao, J., and Dai, H., Appl. Phys. Lett. 80 (2002) p. 73.CrossRefGoogle Scholar
40. Kong, J. and Dai, H., J. Phys. Chem. B 105 (2001) p. 2890.Google Scholar
41. Kruger, M., Buitelaar, M.R., Nussbaumer, T., Schonenberger, C., and Forro, L., Appl. Phys. Lett. 78 (2001) p. 1291.Google Scholar
42. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P.L., Nano Lett. 2 (2002) p. 869.Google Scholar
43. Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., and Dai, H.J., Nat. Mater. 1 (2002) p. 241.Google Scholar
44. Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., and Dekker, C., Nano Lett. 3 (2003) p. 727.CrossRefGoogle Scholar
45. Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y.M., Kim, W., Utz, P.J., and Dai, H., in PNAS: Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 4984.Google Scholar
46. Star, A., Gabriel, J.C.P., Bradley, K., and Gruner, G., Nano Lett. 3 (2003) p. 459.Google Scholar
47. Yao, Z., Postma, H.W. C., Balents, L., and Dekker, C., Nature 402 (1999) p. 273.Google Scholar
48. Lefebvre, J., Antonov, R.D., Radosavljevic, M., Lynch, J.F., Llaguno, M., and Johnson, A.T., Carbon 38 (2000) p. 1745.Google Scholar
49. Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A., and McEuen, P.L., Science 288 (2000) p. 494.Google Scholar
50. Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L., and Lieber, C.M., Science 289 (2000) p. 94.CrossRefGoogle Scholar
51. Tombler, T.W., Chongwu, Z., Alexseyev, L., Jing, K., Hongjie, D., Lei, L., Jayanthi, C.S., Meijie, T., and Shi-Yu, W., Nature 405 (2000) p. 769.CrossRefGoogle Scholar
52. Cao, J., Wang, Q., and Dai, H.J., Phys. Rev. Lett. 90 157601 (2003).Google Scholar
53. Minot, E.D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., and McEuen, P.L., Phys. Rev. Lett. 90 156401 (2003).Google Scholar
54. Cheung, C.L., Kurtz, A., Park, H., and Lieber, C.M., J. Phys. Chem. B 106 (2002) p. 2429.Google Scholar
55. Huang, S.M., Cai, X.Y., and Liu, J., J. Am. Chem. Soc. 125 (2003) p. 5636.Google Scholar
56. Fan, S., Liang, W., Dang, H., Franklin, N., Tombler, T., Chapline, M., and Dai, H., Physica E 8 (2000) p. 179.Google Scholar
57. Krupke, R., Hennrich, F., H. von Lohneysen, and Kappes, M.M., Science 301 (2003) p. 344.CrossRefGoogle Scholar
58. Strano, M.S., Huffman, C.B., Moore, V.C., O'Connell, M.J., Haroz, E.H., Hubbard, J., Miller, M., Rialon, K., Kittrell, C., Ramesh, S., Hauge, R.H., and Smalley, R.E., J. Phys. Chem. B 107 (2003) p. 6979.Google Scholar