Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T14:47:18.377Z Has data issue: false hasContentIssue false

Electron flow and biofilms

Published online by Cambridge University Press:  18 May 2011

Kenneth H. Nealson
Affiliation:
University of Southern California, Los Angeles, CA 90089-0740, USA; [email protected]
Steven E. Finkel
Affiliation:
University of Southern California, Los Angeles, CA 90089-2910, USA; [email protected]
Get access

Abstract

Bacteria living in surface-attached biofilm communities must maintain electrochemical gradients to support basic cellular functions, including chemo-osmotic transport and adenosine triphosphate synthesis. Central to this is the maintenance of electron flow to terminal electron acceptors. These acceptors can be soluble inorganic and organic molecules, such as oxygen, nitrate, sulfate, dimethyl sulfoxide, or fumarate, or solid metal oxides, such as Fe(III) and Mn(IV) oxides. When electrons are transferred to a solid substrate, they may be (1) carried directly to the acceptor via outer membrane cytochromes, (2) carried by electron shuttle molecules, (3) transferred along conductive protein nanowires, or (4) conducted through other extracellular matrices. No matter what the electron acceptor is, in the laboratory, bacterial biofilms are frequently studied while growing on inert surfaces, incapable of electron transfer. However, in natural environments, as well as many industrial and biotechnology settings, biofilms grow on electrically active surfaces. In this review, we propose that the study of bacterial biofilms on redox-active surfaces is important both for the development of industrial processes, such as microbial fuel cells and wastewater treatment systems, as well as for our understanding of how these communities of microbes affect global nutrient cycling, other geobiological processes, and even human disease.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nealson, K.H., Rye, R.R., Treatise on Geochemistry (Elsevier Pergammon, Amsterdam, 2003), Vol. 8, pp. 41.CrossRefGoogle Scholar
2.White, D.J., The Physiology and Biochemistry of Prokaryotes, 3rd Edition (Oxford University Press, New York, NY, 2007).Google Scholar
3.Stumm, W., Morgan, J.J., Aquatic Chemistry, 3rd Edition (Wiley-Interscience, New York, NY, 1996).Google Scholar
4.Madigan, M.T., Martinko, J.M., Brock Biology of Microorganisms, 11th Edition (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).Google Scholar
5.Aguilar, C., Nealson, K.H., Can. J. Fish. Aquat. Sci. 51, 185 (1994).CrossRefGoogle Scholar
6.Dean, W., Moore, W.S., Nealson, K.H., Chem. Geol. 34, 53 (1981).Google Scholar
7.Myers, C.R., Nealson, K.H., Science 240, 1319 (1988).CrossRefGoogle Scholar
8.Myers, C.R., Nealson, K.H., J. Bacteriol. 172, 6232 (1990).Google Scholar
9.Lovley, D.R., Phillips, E.J., Appl. Environ. Microbiol. 54, 1472 (1988).Google Scholar
10.Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J., Gorby, Y.A., Goodwin, S., Arch. Microbiol. 159, 336 (1993).Google Scholar
11.Marsili, E., Proc. Natl. Acad. Sci. U.S.A. 105, 3968 (1988).Google Scholar
12.von Canstein, H., Ogawa, J., Shimuzu, S., Lloyd, J.R., Appl. Environ. Microbiol. 74, 615 (2008).CrossRefGoogle Scholar
13.Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.-S., Kim, B.-H., Kim, K.-S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H., Fredrickson, J.K., Proc. Natl. Acad. Sci. U.S.A. 103, 11358 (1996).CrossRefGoogle Scholar
14.El-Naggar, M., Gorby, Y.A., Xia, W., Nealson, K.H., Biophys. J. 95, 10 (2008).CrossRefGoogle Scholar
15.El-Naggar, M., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.W., Nealson, K.H., Gorby, Y.A., Proc. Natl. Acad. Sci. U.S.A. 107, 18127 (2010).CrossRefGoogle Scholar
16.Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R., Nature 435, 1098 (2005).Google Scholar
17.Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., Lovley, D.R., Appl. Environ. Microbiol. 72, 7345 (2006).Google Scholar
18.Kato, S., Nakamura, R., Kai, F., Watanabe, K., Hashimoto, K., Environ. Microbiol. 12, 3114 (2010).CrossRefGoogle Scholar
19.Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., Sayama, M., Nature 463, 1071 (2010).Google Scholar
20.Kim, B.H., Biotechnol. Tech. 13, 475 (1999).CrossRefGoogle Scholar
21.McLean, J.S., Wange, G., Gorby, Y.A., Wainstein, M., McQuaid, J., Ishii, S.I., Bretschger, O., Beyenal, H., Nealson, K.H.. Environ. Sci. Technol. 44, 2721 (2010).Google Scholar
22.Rabaey, K., Rodriguez, J., Blackall, L.L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H., ISME J. 1, 9 (2007).Google Scholar
23.Rabaey, K., Rozendal, R.A., Nat. Rev. Microbiol. 8, 706 (2010).Google Scholar
24.Logan, B.E., Regan, J.M., Trends Microbiol. 14, 512 (2006).CrossRefGoogle Scholar
25.Logan, B.E., Nat. Rev. Microbiol. 7, 375 (2009).CrossRefGoogle Scholar
26.Lovley, D.R., Nat. Rev. Microbiol. 17, 327 (2006).Google Scholar
27.Lovley, D.R., Curr. Opin. Biotechnol. 19, 564 (2008).Google Scholar
28.Beliaev, A., Saffarini, D., J. Bacteriol. 180, 6292 (1998).Google Scholar
29.Myers, J.M., Muers, C.R., Appl. Environ. Microbiol. 67, 260 (2001).Google Scholar
30.Bretschger, O., Obraztsova, A., Sturm, C.A., Chang, I.S., Gorby, Y.A., Reed, S.B., Culley, D.E., Reardon, C.L., Barua, S., Romine, M.F., Zhou, J., Beliaev, A.S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.H., Fredrickson, J.K., Nealson, K.H., Appl. Environ. Microbiol. 73, 7003 (2007).Google Scholar
31.Hall-Stoodley, L., Costerton, J.W., Stoodley, P., Nat. Rev. Microbiol. 2 (2), 95 (2004).Google Scholar
32.Kan, J., Hsu, L., Cheung, A.C., Pirbazari, M., Nealson, K.H., Environ Sci. Technol. 45, 1139 (2011).Google Scholar
33.Thrash, J.C., Coates, J.D., Environ. Sci. Technol. 42, 3921 (2008).Google Scholar
34.Torres, C.I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A.K., Wanger, G., Gorby, Y.A., Rittmann, B.E., Environ. Sci. Technol. 43, 9519 (2009).Google Scholar
35.Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R., Biosens. Bioelectron. 24, 906 (2008).Google Scholar
36.Hansen, S.K., Rainey, P.B., Haagensen, J.A., Molin, S., Nature 445, 533 (2007).CrossRefGoogle Scholar
37.Boles, B.R., Singh, P.K., Proc. Natl. Acad. Sci. U.S.A. 105, 12503 (2008).CrossRefGoogle Scholar
38.Kraigsley, A.M., Finkel, S.E., FEMS Microbiol. Lett. 293, 135 (2009).Google Scholar
39.Stumm, W., Morgan, J.J., Aquatic chemistry: Chemical equilibria and rates in natural waters. 3rd edition. (John Wiley & Sons, Inc. New York, 1996), p. 1022.Google Scholar