Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T13:58:30.511Z Has data issue: false hasContentIssue false

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level

Published online by Cambridge University Press:  12 July 2012

Stephen Jesse
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; [email protected]
Amit Kumar
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; [email protected]
Thomas M. Arruda
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; [email protected]
Yunseok Kim
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; [email protected]
Sergei V. Kalinin
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN; [email protected]
Francesco Ciucci
Affiliation:
Hong Kong University of Science and Technology; [email protected]
Get access

Abstract

Atomistic and nanometer scale mechanisms of electrochemical reactions and ionic flows in solids in the nanometer–micron range persist as terra incognito in modern science. While structural and electronic phenomena are now accessible to electron and scanning probe microscopy (SPM) techniques, probing nanoscale electrochemistry requires the capability to probe local ionic currents. Here, we discuss principles and applications of electrochemical strain microscopy (ESM), a technique based on probing minute deformations induced by electric bias applied to an SPM tip. ESM imaging and spectroscopy are illustrated for several energy storage and conversion materials. We further argue that down-scaling of physical device structures based on oxides necessitates ionic and electrochemical effects to be taken into account. Future pathways for ESM development are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tarascon, J.M., Armand, M., Nature 414 (6861), 359 (2001).CrossRefGoogle Scholar
2.Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., Adv. Mater. 10 (10), 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
3.Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., J. Appl. Phys. 90 (3), 1387 (2001).CrossRefGoogle Scholar
4.Adler, S.B., Chem. Rev. 104 (10), 4791 (2004).CrossRefGoogle Scholar
5.Bagotsky, V.S., Fuel Cells: Problems and Solutions (Wiley, NY, 2009).Google Scholar
6.Gerber, C., Lang, H.P., Nat. Nanotechnol. 1 (1), 3 (2006).CrossRefGoogle Scholar
7.Pan, S.H., Hudson, E.W., Lang, K.M., Eisaki, H., Uchida, S., Davis, J.C., Nature 403 (6771), 746 (2000).CrossRefGoogle Scholar
8.Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A., Nature 460 (7259), 1106 (2009).CrossRefGoogle Scholar
9.Fath, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A., Science 285 (5433), 1540 (1999).CrossRefGoogle Scholar
10.Wu, S.W., Ogawa, N., Ho, W., Science 312 (5778), 1362 (2006).CrossRefGoogle Scholar
11.Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E., Science 275 (5304), 1295 (1997).CrossRefGoogle Scholar
12.Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.Q., Kalinin, S.V., Nat. Mater. 7 (3), 209 (2008).CrossRefGoogle Scholar
13.Kalinin, S.V., Jesse, S., Rodriguez, B.J., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Phys. Rev. Lett. 100, 15 (2008).CrossRefGoogle Scholar
14.Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G., Nat. Mater. 9 (4), 353 (2010).CrossRefGoogle Scholar
15.Kalinin, S.V., Balke, N., Adv. Mater. 22 (35), E193 (2010).Google Scholar
16.Kostecki, R., McLarnon, F., Appl. Phys. Lett. 76 (18), 2535 (2000).CrossRefGoogle Scholar
17.Lee, M., O’Hayre, R., Prinz, F.B., Gur, T.M., Appl. Phys. Lett. 85 (16), 3552 (2004).CrossRefGoogle Scholar
18.Alliata, D., Kotz, R., Novak, P., Siegenthaler, H., Electrochem. Commun. 2 (6), 436 (2000).CrossRefGoogle Scholar
19.Garcia, R., Calleja, M., Perez-Murano, F., Appl. Phys. Lett. 72 (18), 2295 (1998).CrossRefGoogle Scholar
20.Garcia, R., Losilla, N.S., Martinez, J., Martinez, R.V., Palomares, F.J., Huttel, Y., Calvaresi, M., Zerbetto, F., Appl. Phys. Lett. 96, 14 (2010).Google Scholar
21.Garcia, R., Martinez, R.V., Martinez, J., Chem. Soc. Rev. 35 (1), 29 (2006).CrossRefGoogle Scholar
22.Tian, Y., Timmons, A., Dahn, J.R., J. Electrochem. Soc. 156 (3), A187 (2009).CrossRefGoogle Scholar
23.Vullum, F., Teeters, D., J. Power Sources 146 (1–2), 804 (2005).CrossRefGoogle Scholar
24.Lee, W., Lee, M., Kim, Y.B., Prinz, F.B., Nanotechnology 20, 44 (2009).Google Scholar
25.Taskiran, A., Schirmeisen, A., Fuchs, H., Bracht, H., Roling, B., Phys. Chem. Chem. Phys. 11 (26), 5499 (2009).CrossRefGoogle Scholar
26.Schirmeisen, A., Taskiran, A., Fuchs, H., Bracht, H., Murugavel, S., Roling, B., Phys. Rev. Lett. 98, 22 (2007).CrossRefGoogle Scholar
27.McEvoy, T.M., Stevenson, K.J., Langmuir 21 (8), 3521 (2005).CrossRefGoogle Scholar
28.Shao, R., Kalinin, S.V., Bonnell, D.A., Appl. Phys. Lett. 82 (12), 1869 (2003).CrossRefGoogle Scholar
29.O’Hayre, R., Lee, M., Prinz, F.B., J. Appl. Phys. 95 (12), 8382 (2004).CrossRefGoogle Scholar
30.Pingree, L.S.C., Martin, E.F., Shull, K.R., Hersam, M.C., IEEE Trans. Nanotechnol. 4 (2), 255 (2005).CrossRefGoogle Scholar
31.Louie, M.W., Hightower, A., Haile, S.M., ACS Nano 4 (5), 2811 (2010).CrossRefGoogle Scholar
32.Balke, N., Jesse, S., Morozovska, A.N., Eliseev, E., Chung, D.W., Kim, Y., Adamczyk, L., Garcia, R.E., Dudney, N., Kalinin, S.V., Nat. Nanotechnol. 5 (10), 749 (2010).CrossRefGoogle Scholar
33.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V., Nano Lett. 10 (9), 3420 (2010).CrossRefGoogle Scholar
34.Morozovska, A.N., Eliseev, E.A., Balke, N., Kalinin, S.V., J. Appl. Phys. 108, 5 (2010).Google Scholar
35.Gruverman, A., Kholkin, A., Rep. Prog. Phys. 69 (8), 2443 (2006).CrossRefGoogle Scholar
36.Gruverman, A., Auciello, O., Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
37.Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Rep. Prog. Phys. 73, 5 (2010).CrossRefGoogle Scholar
38.Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., J. Am. Ceram. Soc. 92 (8), 1629 (2009).CrossRefGoogle Scholar
39.Bintachitt, P., Trolier-McKinstry, S., Seal, K., Jesse, S., Kalinin, S.V., Appl. Phys. Lett. 94, 4 (2009).CrossRefGoogle Scholar
40.Jesse, S., Guo, S., Kumar, A., Rodriguez, B.J., Proksch, R., Kalinin, S.V., Nanotechnology 21, 40 (2010).CrossRefGoogle Scholar
41.Rodriguez, B.J., Callahan, C., Kalinin, S.V., Proksch, R., Nanotechnology 18, 47 (2007).Google Scholar
42.Kos, A.B., Hurley, D.C., Meas. Sci. Technol. 19, 1 (2008).CrossRefGoogle Scholar
43.Jesse, S., Kalinin, S.V., J. Phys. D: Appl. Phys. 44, 46 (2011).CrossRefGoogle Scholar
44.Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., Rodriguez, B.J., Nanotechnology 18, 43 (2007).CrossRefGoogle Scholar
45.Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., Kalinin, S.V., J. Electrochem. Soc. 158 (8), A982 (2011).CrossRefGoogle Scholar
46.Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., Kalinin, S.V., ACS Nano 5 (12), 9682 (2011).CrossRefGoogle Scholar
47.Amatucci, G.G., Tarascon, J.M., Klein, L.C., J. Electrochem. Soc. 143 (3), 1114 (1996).CrossRefGoogle Scholar
48.Adler, S.B., J. Am. Ceram. Soc. 84 (9), 2117 (2001).CrossRefGoogle Scholar
49.Chen, X.Y., Yu, J.S., Adler, S.B., Chem. Mater. 17 (17), 4537 (2005).CrossRefGoogle Scholar
50.Kharton, V.V., Marques, F.M.B., Atkinson, A., Solid State Ionics 174 (1–4), 135 (2004).CrossRefGoogle Scholar
51.Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S., Nat. Chem. 3 (9), 707 (2011).CrossRefGoogle Scholar
52.Kalinin, S.V., Jesse, S., Tselev, A., Baddorf, A.P., Balke, N., ACS Nano 5 (7), 5683 (2011).CrossRefGoogle Scholar
53.Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., Evans, C.D., Solid State Ionics 135 (1–4), 33 (2000).CrossRefGoogle Scholar
54.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Ivanov, I.N., Dudney, N.J., Kalinin, S.V., ACS Nano 4 (12), 7349 (2010).CrossRefGoogle Scholar
55.Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3 (1), 31 (2008).CrossRefGoogle Scholar
56.Morozovska, A.N., Eliseev, E.A., Tagantsev, A.K., Bravina, S.L., Chen, L.Q., Kalinin, S.V., Phys. Rev. B 83, 19 (2011).CrossRefGoogle Scholar
57.Ciucci, F., Chueh, W.C., Goodwin, D.G., Haile, S.M., Phys. Chem. Chem. Phys. 13 (6), 2121 (2011).CrossRefGoogle Scholar
58.Lai, W., Ciucci, F., Electrochim. Acta 56 (1), 531 (2010).CrossRefGoogle Scholar
59.Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., J. Phys. Chem. Lett. 1 (14), 2193 (2010).CrossRefGoogle Scholar
60.Goodenough, J.B., Kim, Y., Chem. Mater. 22 (3), 587 (2010).CrossRefGoogle Scholar
61.Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21 (25–26), 2632 (2009).CrossRefGoogle Scholar
62.Arruda, T.M., Kumar, A., Kalinin, S.V., Jesse, S., Nano Lett. 11 (10), 4161 (2011).CrossRefGoogle Scholar
63.Bristowe, N.C., Littlewood, P.B., Artacho, E., Phys. Rev. B 83, 20 (2011).CrossRefGoogle Scholar
64.Bi, F., Bogorin, D.F., Cen, C., Bark, C.W., Park, J.W., Eom, C.B., Levy, J., Appl. Phys. Lett. 97, 17 (2010).CrossRefGoogle Scholar
65.Wang, R.V., Fong, D.D., Jiang, F., Highland, M.J., Fuoss, P.H., Thompson, C., Kolpak, A.M., Eastman, J.A., Streiffer, S.K., Rappe, A.M., Stephenson, G.B., Phys. Rev. Lett. 102, 4 (2009).Google Scholar
66.Sai, N., Kolpak, A.M., Rappe, A.M., Phys. Rev. B 72, 2 (2005).CrossRefGoogle Scholar
67.Yi, H.T., Choi, T., Choi, S.G., Oh, Y.S., Cheong, S.W., Adv. Mater. 23 (30), 3403 (2011).CrossRefGoogle Scholar
68.Jiang, W., Noman, M., Lu, Y. M., Bain, J.A., Salvador, P.A., Skowronski, M., J. Appl. Phys. 110, 3 (2011).Google Scholar
69.Fleig, J., Schintlmeister, A., Opitz, A.K., Hutter, H., Scr. Mater. 65 (2), 78 (2011).CrossRefGoogle Scholar
70.Spaldin, N.A., Fiebig, M., Science 309 (5733), 391 (2005).CrossRefGoogle ScholarPubMed
71.Kim, Y., Disa, A.S., Babakol, T.E., Brock, J.D., Appl. Phys. Lett. 96, 25 (2010).Google Scholar
72.Kalinin, S., Balke, N., Jesse, S., Tselev, A., Kumar, A., Arruda, T.M., Guo, S., Proksch, R., Mater. Today 14, 548 (2011).CrossRefGoogle Scholar