Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-12T15:49:55.135Z Has data issue: false hasContentIssue false

Electrical and Spectroscopic Characterization of Molecular Junctions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The design of future molecular electronic devices requires a firm understanding of the conduction mechanisms that determine their electrical characteristics. Progress toward this goal has been hindered by complications in controlling the exact configuration and makeup of fabricated molecular junctions, thus limiting the availability of quantitative experimental data for developing cohesive theories to model and predict molecular transport. This article summarizes recent research aimed at developing well-controlled systems for comparing molecular conduction and vibrational spectra using crossed-wire and in-wire metal–molecule–metal junctions. Systematic variations in molecular structure and metal–molecule contacts show strong quantitative agreement in device properties, while spectroscopic data provide evidence that the properties are due to the molecular junction. Further investigations using these and other molecular junction test beds will provide the needed experimental data to advance fundamental understanding of molecular transport and facilitate future molecular electronics applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1For example, see Tour, J.M., Molecular Electronics (World Scientific, River Edge, NJ, 2003).CrossRefGoogle Scholar
2For example, see Ellenbogen, J.C. and Love, J. C., Proc. IEEE 88 (2000) p. 386.CrossRefGoogle Scholar
3For example, see Goldstein, S.C. and Budiu, M., in Proc. 28th Annu. Int. Symp. on Computer Architecture (ACM Press, New York, 2001) p.178.Google Scholar
4For example, see Mantooth, B.A. and Weiss, P.S., Proc. IEEE 91 (2003) p.1785.CrossRefGoogle Scholar
5For example, see Andres, R.P., Bein, T., Dorogi, M., Feng, S., Henderson, J.I., Kubiak, C.P., Mahoney, W., Osifchin, R.G., and Reifenberger, R., Science 272 (1996) p.1323.CrossRefGoogle Scholar
6For example, see Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., and Weiss, P.S., Science 292 (2001) p.2303.CrossRefGoogle Scholar
7For example, see Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M., Science 278 (1997) p. 252; J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H.V. Löhneysen, Phys. Rev. Lett. 88 176804 (2002); H. Park, J. Park, A.K.L. Lim, E.H. Anderson, P.A. Alivisatos, and P.L. McEuen, Nature 407 (2000) p. 57; J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph, Nature 417 (2002) p. 722; W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park, Nature 417 (2002) p.725.CrossRefGoogle Scholar
8For example, see Wold, D.J. and Frisbie, C.D., J. Am. Chem. Soc. 123 (2001) p. 5549; X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, Science 294 (2001) p.571.CrossRefGoogle Scholar
9For example, see Haag, R., Rampi, M.A., Holmlin, R.E., and Whitesides, G.M., J. Am. Chem. Soc. 121 (1999) p.7895; J.D. Le, Y. He, T.R. Hoye, C.C. Mead, and R.A. Kiehl, Appl. Phys. Lett. 83 (2003) p.5518.CrossRefGoogle Scholar
10For example, see Chen, J., Reed, M.A., Rawlett, A.M., and Tour, J.M., Science 286 (1999) p.1550; M.A. Reed, J.Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, Appl. Phys. Lett. 78 (2001) p.3735.CrossRefGoogle Scholar
11For example, see Mbindyo, J.K.N., Mallouk, T.E., Mattzela, J.B., Kratochvilova, I., Razavi, B., Jackson, T.N., and Mayer, T.S., J. Am. Chem. Soc. 124 (2002) p.4020.CrossRefGoogle Scholar
12For example, see Kushmerick, J.G., Holt, D.B., Yang, J.C., Naciri, J., Moore, M.H., and Shashidhar, R., Phys. Rev. Lett. 89 086802 (2002).CrossRefGoogle Scholar
13For example, see Collier, C.P., Wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., and Heath, J.R., Science 285 (1999) p.391.CrossRefGoogle Scholar
14Cai, L.T., Skulason, H., Kushmerick, J.G., Pollack, S.K., Naciri, J., Shashidhar, R., Allara, D.A., Mallouk, T.E., and Mayer, T.S., J. Phys. Chem. B108 (2004) p.2827.CrossRefGoogle Scholar
15Kushmerick, J.G., Holt, D.B., Pollack, S.K., Ratner, M.A., Yang, J.C., Schull, T.L., Naciri, J., Moore, M.H., and Shashidhar, R., J. Am. Chem. Soc. 124 (2002) p.10654.CrossRefGoogle Scholar
16Kushmerick, J.G., Pollack, S.K., Yang, J.C., Naciri, J., Holt, D.B., Ratner, M.A., and Shashidhar, R., Ann. N.Y. Acad. Sci. 1006 (2003) p. 277.CrossRefGoogle Scholar
17Kushmerick, J.G., Lazorcik, J., Patterson, C.H., Shashidhar, R., Seferos, D.S., and Bazan, G.C., Nano Lett. 4 (2004) p.639.CrossRefGoogle Scholar
18Ulman, A., Chem. Rev. 96 (1996) p.1533; G.E. Poirier, Chem. Rev. 97 (1997) p.1117.CrossRefGoogle Scholar
19Bumm, L.A., Arnold, J.J., Dunbar, T.D., Allara, D.L., and Weiss, P.S., J.Phys.Chem. B83 (1999) p.8122.CrossRefGoogle Scholar
20For example, see Allara, D.L., Dunbar, T.D., Weiss, P.S., Bumm, L.A., Cygan, M.T., Tour, J.M., Burgin, T.P., and Jones, L. II, Ann. N.Y. Acad. Sci. 852 (1998) p. 349; M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, J. Am. Chem. Soc. 120 (1998) p. 2721. 21. R.G. Nuzzo and D.L. Allara, J. Am. Chem. Soc. 105 (1983) p.4481.CrossRefGoogle Scholar
22Kushmerick, J.G., Naciri, J., Yang, J.C., and Shashidhar, R., Nano Lett. 3 (2003) p.897.CrossRefGoogle Scholar
23Monnell, J.D., Stapleton, J.J., Tour, J.M., Allara, D.L., and Weiss, P.S., J.Phys. Chem. B (2004) in press.Google Scholar
24Stewart, M.P., Maya, F., Kosynkin, D.V., Dirk, S.M., Stapleton, J.J., McGuiness, C.M., Allara, D., and Tour, J.M., J.Am. Chem. Soc 126 (2004) p.370.CrossRefGoogle Scholar
25Stapleton, J.J., Harder, P., Daniel, T.A., Reinard, M., Skulason, H., Yao, Y., Price, D.W., Tour, J.M., and Allara, D.L., Langmuir 19 (2003) p. 8245.CrossRefGoogle Scholar
26Tian, M.L., Wang, J.U., Kurtz, J., Mallouk, T.E., and Chan, M.H.W., Nano Lett. 3 (2003) p. 919.CrossRefGoogle Scholar
27Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J.K.N., and Mallouk, T.E., Appl. Phys. Lett. 77 (2000) p.1399.CrossRefGoogle Scholar
28Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L. II, Allara, D.L., Tour, J.M., and Weiss, P.S., Science 271 (1996) p. 1705.CrossRefGoogle Scholar
29Cygan, M.T., Dunbar, T.D., Arnold, J.J., Bumm, L.A., Shedlock, N.F., Burgin, T.P., Jones, L. II, Allara, D.L., Tour, J.M., and Weiss, P.S., J. Am. Chem. Soc. 120 (1998) p.2721.CrossRefGoogle Scholar
30Wold, D.J., Haag, R., Rampi, M.A., and Frisbie, C.D., J.Phys. Chem. B 106 (2002) p.2813.CrossRefGoogle Scholar
31Holmlin, R.E., Haag, R., Chabinyc, M.L., Ismagilov, R.F., Cohen, A.E., Terfort, A., Rampi, M.A., and Whitesides, G.M., J. Am. Chem. Soc. 123 (2001) p.5075.CrossRefGoogle Scholar
32Blum, A.S., Yang, J.C., Shashidhar, R., and Ratna, B., Appl. Phys. Lett. 82 (2003) p.3322.CrossRefGoogle Scholar
33Sachs, S.B., Dudek, S.P., Hsung, R.P., Sita, L.R., Smalley, J.F., Newton, M.D., Feldberg, S.W., and Chidsey, C.E.D., J. Am. Chem. Soc. 119 (1997) p.10563.CrossRefGoogle Scholar
34Creager, S., Yu, C.J., Bamdad, C., O'Connor, S., MacLean, T., Lam, E., Chong, Y., Olsen, G.T., Luo, J., Gozin, M., and Kayyem, J.F., J.Am. Chem. Soc. 121 (1999) p.1059.CrossRefGoogle Scholar
35Samanta, M.P., Tian, W., Datta, S., Henderson, J.I., and Kubiak, C.P., Phys. Rev. B 53 (1996) p.R7626.CrossRefGoogle Scholar
36Seminario, J.M. and Derosa, P.A., J. Am. Chem. Soc. 123 (2001) p.12418.CrossRefGoogle Scholar
37Heeger, A.J., J. Phys. Chem. B105 (2001) p.8475.CrossRefGoogle Scholar
38Farchioni, R. and Grosso, G., eds., Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, Vol. 41 (Springer, New York, 2001).CrossRefGoogle Scholar
39Peierls, R.E., Quantum Theory of Solids (Oxford University Press, London, 1955).Google Scholar
40Patrone, L., Palacin, S., Charlier, J., Armand, F., Bourgoin, J.P., Tang, H., and Gauthier, S., Phys. Rev. Lett. 91 096802 (2003); and S.N. Yaliraki, M. Kemp, and M.A. Ratner, J. Am. Chem. Soc. 121 (1999) p.342.CrossRefGoogle Scholar
41Zhou, C., Deshpande, M.R., Reed, M.A., Jones, L. II, and Tour, J.M., Appl. Phys. Lett. 71 (1997) p. 611; A.A. Dhirani, P.H. Lin, P. Guyot-Sionnest, R.W. Zehner, and L.R. Sita, J. Chem. Phys. 106 (1997) p. 5249; J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. Lett. 89 (2002) p.138301.CrossRefGoogle Scholar
42Beebe, J.M., Engelkes, V.B., Miller, L.L., and Frisbie, C.D., J. Am. Chem. Soc. 124 (2002) p.11268.CrossRefGoogle Scholar
43Jaklevic, R.C. and Lambe, J., Phys. Rev. Lett. 17 (1966) p.1139.CrossRefGoogle Scholar
44Stipe, B.C., Rezaei, M.A., and Ho, W., Science 280 (1998) p.1732.CrossRefGoogle Scholar
45Troisi, A., Ratner, M.A., and Nitzan, A., J.Chem. Phys. 118 (2003) p.6072.CrossRefGoogle Scholar
46Segal, D. and Nitzan, A., J. Chem. Phys. 117 (2002) p. 3915.CrossRefGoogle Scholar
47Chen, Y.C., Zwolak, M., and Ventra, M. Di, Nano Lett. 3 (2003) p.1691.CrossRefGoogle Scholar
48Selzer, Y., Cabassi, M.A., Mayer, T.S., and Allara, D.L., J. Am. Chem. Soc., Chem. Commun. 126 (2004) p.4052.CrossRefGoogle Scholar