Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:17:12.252Z Has data issue: false hasContentIssue false

Dynamic Substrates for Cell Biology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The development of dynamic substrates that can modulate the behavior of adherent cells is important for fundamental studies in cell biology, applications in biomaterials, and engineering microsystems that combine cellular and material components. This review outlines several strategies based on physical transduction schemes (including electrical, photochemical, thermal, and mechanical forces) for designing interfaces that are active and can signal changes in the behavior of attached cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Langer, R. and Tirrell, D.A., Nature 428 (2004) p. 487.CrossRefGoogle Scholar
2.Hersel, U., Dahmen, C., and Kessler, H., Biomaterials 24 (2003) p. 4385.CrossRefGoogle ScholarPubMed
3.Jung, D.R., Kapur, R., Adams, T., Giuliano, K.A., Mrksich, M., Craighead, H.G., and Taylor, D.L., Crit. Rev. Biotechnol. 21 (2001) p. 111.CrossRefGoogle Scholar
4.McCaig, C.D. and Zhao, M., BioEssays 19 (1997) p. 819.CrossRefGoogle Scholar
5.Nishimura, K.Y., Isseroff, R.R., and Nuccitelli, R., J. Cell Sci. 109 (1996) p. 199.CrossRefGoogle Scholar
6.Zhao, M., Forrester, J.V., and McCaig, C.D., Proc. Natl. Acad. Sci. USA 96 (1999) p. 4942.CrossRefGoogle Scholar
7.Hinnah, S.C., Hill, K., Wagner, R., Schlicher, T., and Soll, J., EMBO J. 16 (1997) p. 7351.CrossRefGoogle Scholar
8.Pancrazio, J.J., Whelan, J.P., Borkholder, D.A., Ma, W., and Stenger, D.A.., Ann. Biomed. Eng. 27 (1999) p. 697.CrossRefGoogle Scholar
9.Wong, J.Y., Langer, R., and Ingber, D.E., Proc. Natl. Acad. Sci. USA 91 (1994) p. 3201.CrossRefGoogle Scholar
10.Schmidt, C.E., Shastri, V.R., Vacanti, J.P., and Langer, R., Proc. Natl. Acad. Sci. USA 94 (1997) p. 8948.CrossRefGoogle Scholar
11.Mrksich, M., Chem. Soc. Rev. 29 (2000) p. 267.CrossRefGoogle Scholar
12.Yousaf, M.N., Houseman, B.T., and Mrksich, M., Angew. Chem. Int. Ed. 40 (2001) p. 1093.3.0.CO;2-Q>CrossRefGoogle Scholar
13.Mrksich, M., Dike, L.E., Tien, J., Ingber, D.E., and Whitesides, G.M., Exp. Cell Res. 235 (1997) p. 305.CrossRefGoogle Scholar
14.Yeo, W.S., Hodneland, C.D., and Mrksich, M., ChemBioChem 2 (2001) p. 590.3.0.CO;2-D>CrossRefGoogle Scholar
15.Yeo, W.S., Yousaf, M.N., and Mrksich, M., J. Am. Chem. Soc. 125 (2003) p. 14994.CrossRefGoogle Scholar
16.Jiang, X., Ferrigno, R., Mrksich, M., and Whitesides, G.M., J. Am. Chem. Soc 125 (2003) p. 2366.CrossRefGoogle Scholar
17.Blonder, R., Willner, I., and Bückmann, A.F., J. Am. Chem. Soc. 120 (1998) p. 9335.CrossRefGoogle Scholar
18.Kaji, H., Kanada, M., Oyamatsu, D., Matsue, T., and Nishizawa, M., Langmuir 20 (2004) p. 16.CrossRefGoogle Scholar
19.Blonder, R., Katz, E., Willner, I., Wray, V., and Bückmann, A.F., J. Am. Chem. Soc. 119 (1997) p. 11747.CrossRefGoogle Scholar
20.Sortino, S., Petralia, S., Compagnini, G., Conoci, S., and Condorelli, G., Angew. Chem. Int. Ed. 41 (2002) p. 1914.3.0.CO;2-J>CrossRefGoogle Scholar
21.Dillmore, W.S., Yousaf, M.N., and Mrksich, M., Langmuir 20 (2004) p. 7223.CrossRefGoogle Scholar
22.Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., and Okano, T., J. Biomed. Mat. Res. 45 (1999) p. 355.3.0.CO;2-7>CrossRefGoogle Scholar
23.Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., and Okano, T., Biomacromolecules 5 (2004) p. 505.CrossRefGoogle Scholar
24.Nath, N. and Chilkoti, A., Adv. Mater. 14 (2002) p. 1243.3.0.CO;2-M>CrossRefGoogle Scholar
25.Hyun, J., Lee, W.K., Nath, N., Chilkoti, A., and Zauscher, S., J. Am. Chem. Soc. 126 (2004) p. 7330.CrossRefGoogle Scholar
26.Chen, C.S., Tan, J., and Tien, J., Annu. Rev. Biomed. Eng. 6 (2004) p. 275.CrossRefGoogle Scholar
27.Bao, G. and Suresh, S., Nature Mater. 2 (2003) p. 715.CrossRefGoogle Scholar
28.Sims, J.R., Karp, S., and Ingber, D.E., J. Cell Sci. 103 (1992) p. 1215.CrossRefGoogle Scholar
29.Wang, J.H.-C., J. Theor. Biol. 202 (2000) p. 33.CrossRefGoogle Scholar
30.Galbraith, C.G. and Sheetz, M.P., Proc. Natl. Acad. Sci. USA 94 (1997) p. 9114.CrossRefGoogle Scholar
31.Tan, J.L., Tien, J., Pirone, D., Gray, D.S., and Chen, C.S., Proc. Nat. Acad. Sci. USA 100 (2003) p. 1484.CrossRefGoogle Scholar
32.Cooper, J.M., Trends Biotechnol. 17 (1999) p. 226.CrossRefGoogle Scholar
33.Nishada, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., and Tano, Y., N. Eng. J. Med. 351 (2004) p. 1187.CrossRefGoogle Scholar
34.Hodneland, C.D., Lee, Y.-S., Min, D.-H., and Mrksich, M., Proc. Natl. Acad. Sci. USA 99 (2002) p. 5048.CrossRefGoogle Scholar
35.Murphy, W.L., Mercurius, K.O., Koide, S., and Mrksich, M., Langmuir 20 (2004) p. 1026.CrossRefGoogle Scholar
36.Hubbell, J.A., Curr. Opin. Biotechnol. 14 (2003) p. 551.CrossRefGoogle Scholar