Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T13:28:32.308Z Has data issue: false hasContentIssue false

Dynamic Studies of Semiconductor Growth Processes Using In Situ Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

We have heard a lot about the exciting new materials being used in microelectronics, and I would like to describe some experiments making use of in situ electron microscopy to try to understand the mechanisms of the reactions that these materials undergo during deposition and processing. I will discuss experiments in which we carry out one of these reactions within an electron microscope and record the effect on the specimen in real time. We then use measurements from the recordings to analyze the reaction mechanism in a quantitative way. In this article, I will cover two types of experiments. First, I will describe experiments in which we examine the motion of surface and interface steps during reactions, and I will discuss how that information allows us to determine reaction mechanisms. In this context, I will consider silicon oxidation and silicide formation. In the second type of experiment, we look at how surface morphology changes during reactions. In particular, we will try to understand the growth mechanism of “quantum dots,” which are becoming important for some novel microelectronic applications. After discussing these results, I will describe our attempts to extend the technique of in situ electron microscopy to look at systems other than the solid—solid or gas—solid interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hammar, M., LeGoues, F., Tersoff, J., Reuter, M.C., and Tromp, R.M., Surf. Sci. 349 (1995) p. 129.CrossRefGoogle Scholar
2.Ross, F.M., LeGoues, F.K., Tersoff, J., Tromp, R.M., and Reuter, M.C., Microsc. Res. Tech. 42 (1998) p. 281.3.0.CO;2-T>CrossRefGoogle Scholar
3.McDonald, M.L., Gibson, J.M., and Unterwald, F.C., Rev. Sci. Instrum. 60 (1989) p. 700.CrossRefGoogle Scholar
4.Tromp, R.M., Mankos, M., Reuter, M.C., Ellis, A.W., and Copel, M., Surf. Rev. Lett. 5 (1998) p. 1189.CrossRefGoogle Scholar
5.Cherns, D., Philos. Mag. 30 (1974) p. 549.CrossRefGoogle Scholar
6.Lander, J. and Morrison, J., J. Appl. Phys. 33 (1962) p. 2089.CrossRefGoogle Scholar
7.Smith, F. and Ghidini, G., J. Electrochem. Soc. 129 (1982) p. 1300.CrossRefGoogle Scholar
8.Ross, F.M. and Gibson, J.M., Phys. Rev. Lett. 68 (1992) p. 1782.CrossRefGoogle Scholar
9.Ross, F.M., Gibson, J.M., and Twesten, R.D., Surf. Sci. 310 (1994) p. 243.CrossRefGoogle Scholar
10.Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys., Part 2: Lett. 33 (1994) p. L675.CrossRefGoogle Scholar
11.Nohira, H., Sekikawa, H., Matsuda, M., and Hattori, T., Appl. Surf. Sci. 104/105 (1996) p. 359.CrossRefGoogle Scholar
12.Watanabe, H., Kato, K., Uda, T., Fujita, K., Ichikawa, M., Kawamura, T., and Terakura, K., Phys. Rev. Lett. 80 (1998) p. 345.CrossRefGoogle Scholar
13.Miyata, N., Watanabe, H., and Ichikawa, M., Phys. Rev. B 58 (1998) p. 13670.CrossRefGoogle Scholar
14.Miyata, N., Watanabe, H., and Ichikawa, M., Appl. Phys. Lett. 72 (1998) p. 1715.CrossRefGoogle Scholar
15.Oliver, A.C. and Blakely, J.M., in Structure and Electronic Properties of Ultrathin Dielectric Films on Silicon and Related Structures, edited by D.A., Buchanan, A.H., Edwards, H.J., von Bardeleben, and T., Hattori (Mater. Res. Soc. Symp. Proc. 592, Warrendale, PA, 2000) p. 45.Google Scholar
16. For example, see Mott, N.F., Philos. Mag. B 55 (1987) p. 117.CrossRefGoogle Scholar
17.Ross, F.M., Tersoff, J., Tromp, R.M., Reuter, M., and Bennett, P.A., J. Electron Microsc. 48 (1999) p. 1059.Google Scholar
18.Ross, F.M., IBM J. Res. Dev. 44 (2000) p. 489.CrossRefGoogle Scholar
19.Bulle-Lieuwma, C.W.T., Vandenhoudt, D.E.W., Henz, J., Onda, N., and von Kanel, H., J. Appl. Phys. 73 (1993) p. 3220.CrossRefGoogle Scholar
20.Cabral, C. Jr., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., Roy, R.A., Lavoie, C., Saenger, K.L., Miles, G.L., Mann, R.W., and Nakos, J.S., Appl. Phys. Lett. 71 (1997) p. 3531.CrossRefGoogle Scholar
21. Materials Research Society Spring 2000 Meeting WebCasts Home Page, http://www.mrs.org/ multimedia/spring2000/ (accessed November 2000).Google Scholar
22.Kamins, T.I., Carr, E.C., Williams, R.S., and Rosner, S.J., J. Appl. Phys. 81 (1997) p. 211.CrossRefGoogle Scholar
23.Medeiros-Ribiero, G., Bratkovsky, A.M., Kamins, T.I., Ohlberg, D.A.A., and Williams, R.S., Science 279 (1998) p. 353.CrossRefGoogle Scholar
24.Ross, F.M., Tersoff, J., and Tromp, R.M., Phys. Rev. Lett. 80 (1998) p. 984.CrossRefGoogle Scholar
25.Ross, F.M., Tromp, R.M., and Reuter, M.C., Science 286 (1999) p. 1931.CrossRefGoogle Scholar
26.Ross, F.M., Bennett, P.A., Tromp, R.M., Tersoff, J., and Reuter, M., Micron 30 (1999) p. 21.CrossRefGoogle Scholar