Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T19:41:01.107Z Has data issue: false hasContentIssue false

Directed Growth of Branched Nanowire Structures

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We describe the production of hierarchical branched nanowire structures by the sequential seeding of multiple wire generations with metal nanoparticles. Such complex structures represent the next step in the study of functional nanowires, as they increase the potential functionality of nanostructures produced in a self-assembled way. It is possible, for example, to fabricate a variety of active heterostructure segments with different compositions and diameters within a single connected structure. The focus of this work is on epitaxial III-V semiconductor branched nanowire structures, with the two materials GaP and In As used as typical examples of branched structures with cubic (zinc blende) and hexagonal (wurtzite) crystal structures. The general morphology of these structures will be described, as well as the relationship between morphology and crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Manna, L., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc. 122 (2002) p. 12700.CrossRefGoogle Scholar
2.Grebinski, J.W., Hull, K.L., Zhang, J., Kosel, T.H., and Kuno, M., Chem. Mater. 16 (2004) p. 5260.CrossRefGoogle Scholar
3.Hull, K.L., Grebinski, J.W., Kosel, T.H., and Kuno, M., Chem. Mater. 17 (2005) p. 4416.CrossRefGoogle Scholar
4.Jun, Y.W., Lee, S.M., Kang, N.J., and Cheon, J., J. Am. Chem. Soc. 123 (2001) p. 5150.CrossRefGoogle Scholar
5.Jun, Y.W., Jung, Y.Y., and Cheon, J., J. Am. Chem. Soc. 124 (2002) p. 615.CrossRefGoogle Scholar
6.Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P., Nat. Mater. 2 (2003) p. 382.CrossRefGoogle Scholar
7.Cheng, Y., Wang, Y., Chen, D., and Bao, F., J. Phys. Chem. B 109 (2005) p. 794.CrossRefGoogle Scholar
8.Lao, Y.L., Wen, J.G., and Ren, Z.F., Nano Lett. 2 (2002) p. 1287.CrossRefGoogle Scholar
9.Yan, H., He, R., Pham, J., and Yang, P., Adv. Mater. 15 (2003) p. 402.CrossRefGoogle Scholar
10.Bae, S.Y., Seo, H.W., Choi, H.C., Park, J., and Park, J., J. Phys. Chem. B 108 (2004) p. 12318.CrossRefGoogle Scholar
11.Zhang, T., Dong, W., Keeter-Brewer, M., Konar, S., Njabon, R.N., and Tian, Z.R., J. Am. Chem. Soc. 128 (2006) p. 10960.CrossRefGoogle Scholar
12.Leung, Y.H., Djurisic, A.B., Gao, J., Xie, M.H., and Chan, W.K., Chem. Phys. Lett. 385 (2004) p. 155.CrossRefGoogle Scholar
13.Zhu, Y.Q., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W., Hsu, W.K., Terrones, M., and Walton, D.R.M., J. Mater. Chem. 8 (1998) p. 1859.CrossRefGoogle Scholar
14.Zhou, J., Ding, Y., Deng, S.Z., Gong, L., Xu, N.S., and Wang, Z.L., Adv. Mater. 14 (2005) p. 2107.CrossRefGoogle Scholar
15.Gao, P.X. and Wang, Z.L., Appl. Phys. Lett. 84 (2004) p. 2883.CrossRefGoogle Scholar
16.Gao, P.X., Ding, Y., and Wang, Z.L., Nano Lett. 3 (2003) p. 1315.CrossRefGoogle Scholar
17.Wang, Z.L. and Pan, Z.W., Adv. Mater. 14 (2002) p. 1029.3.0.CO;2-3>CrossRefGoogle Scholar
18.Hu, J., Bando, Y., Zhan, J., Yuan, X., Sekiguchi, T., and Golberg, D., Adv. Mater. 17 (2005) p. 971.CrossRefGoogle Scholar
19.Zhu, Y.Q., Hsu, W.K., Zhou, W.Z., Terrones, M., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 347 (2001) p. 334.CrossRefGoogle Scholar
20.Wan, Q., Wei, M., Zhi, D., MacManus-Driscoll, J.L., and Blamire, M.G., Adv. Mater. 18 (2006) p. 234.CrossRefGoogle Scholar
21.Zhang, J., Yang, Y., Jiang, F., Li, J., Xu, B., Wang, S., and Wang, X., J. Cryst. Growth 293 (2006) p. 236.CrossRefGoogle Scholar
22.Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L., Nat. Mater. 3 (2004) p. 380.CrossRefGoogle Scholar
23.Dick, K.A., Deppert, K., Mårtensson, T., Seifert, W., and Samuelson, L., J. Cryst. Growth 272 (2004) p. 131.CrossRefGoogle Scholar
24.Dick, K.A., Deppert, K., Karlsson, L.S., Wallenberg, L.R., Samuelson, L., and Seifert, W., Adv. Funct. Mater. 15 (2005) p. 1603.CrossRefGoogle Scholar
25.Dick, K.A., Geretovszky, Zs., Mikkelsen, A., Karlsson, L.S., Lundgren, E., Malm, J.-O., Andersen, J.N., Samuelson, L., Seifert, W., Wacaser, B.A., and Deppert, K., Nanotechnology 17 (2006) p. 1344.CrossRefGoogle Scholar
26.May, S.J., Zheng, J.-G., Wessels, B.W., and Lauhon, L.J., Adv. Mater. 17 (2005) p. 598.CrossRefGoogle Scholar
27.Su, J., Cui, G., Gherasimova, M., Tsukamoto, H., Han, J., Ciuparu, D., Lim, S., Pfefferle, L., He, Y., Nurmikko, A.V., Broadbridge, C., and Lehman, A., Appl. Phys. Lett. 86 (2005) p. 13105.CrossRefGoogle Scholar
28.Lan, Z.-H., Liang, C.-H., Hsu, C.-W., Wu, C.-T., Lin, H.-M., Dhara, S., Chen, K.-H., Chen, L.-C., and Chen, C.-C., Adv. Funct. Mater. 14 (2004) p. 233.CrossRefGoogle Scholar
29.Wang, D., Qian, F., Yang, C., Zhong, Z., and Lieber, C.M., Nano Lett. 4 (2004) p. 871.CrossRefGoogle Scholar
30.Wu, Z.H., Mei, X., Kim, D., Blumin, M., and Ruda, H.E., Appl. Phys. Lett. 83 (2003) p. 3368.CrossRefGoogle Scholar
31.Yun, S.H., Wu, J.Z., Dibos, A., Zou, X.D., and Karlsson, U.O., Nano Lett. 6 (2006) p. 385.CrossRefGoogle Scholar
32.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (1964) p. 89.CrossRefGoogle Scholar
33.Persson, A.I., Larsson, M.W., Stenström, S., Ohlsson, B.J., Samuelson, L., and Wallenberg, L.R., Nat. Mater. 3 (2004) p. 677.CrossRefGoogle Scholar
34.Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L., and Seifert, W., Nano Lett. 5 (2005) p. 761.CrossRefGoogle Scholar
35.Willoughby, A.F.Rep. Prog. Phys. 41 (1978) p. 1665.CrossRefGoogle Scholar
36.Mårtensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R., and Samuelson, L., Nano Lett. 4 (2004) p. 1987.CrossRefGoogle Scholar
37.Milnes, A.G. and Polyakov, A.Y., Mater. Sci. Eng. B 18 (1993) p. 237.CrossRefGoogle Scholar
38.Wang, S.Q. and Ye, H.Q., J. Phys. Condens. Mater. 14 (2002) p. 9579.CrossRefGoogle Scholar
39.Gaiduk, P.I., Komarov, F.F., Tishkov, V.S., Wesch, W., and Wendler, E., Phys. Rev. B 61 (2000) p. 15785.CrossRefGoogle Scholar
40.Narayanan, V., Mahajan, S., Sukidi, N., Bachmann, K.J., Woods, V., and Dietz, N., Phil. Mag. A 80 (2000) p. 555.CrossRefGoogle Scholar
41.Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F., and Ratna, B.R., Phys. Rev. B 60 (1999) p. 9191.CrossRefGoogle Scholar
42.Takahashi, K. and Moriizumi, T., Jpn. J. Appl. Phys. 5 (1966) p. 657.CrossRefGoogle Scholar
43.Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O., and Samuelson, L., J. Nanopart. Res. 1 (1999) p. 243.CrossRefGoogle Scholar
44.Scheibel, H.G. and Porstendörfer, J., J. Aerosol Sci. 14 (1983) p. 113.CrossRefGoogle Scholar
45.Knutson, E.O. and Whitby, K.T., J. Aerosol Sci. 6 (1975) p. 443.CrossRefGoogle Scholar
46.Karlsson, M.N.A., De ppert, K., Karlsson, L.S., Magnusson, M.H., Malm, J.-O., and Srinivasan, N.S., J. Nanoparticle Res. 7 (2005) p. 43.CrossRefGoogle Scholar
47.Deppert, K., Schmidt, F., Krinke, T., Dixkens, J., and Fissan, H., J. Aerosol Sci. 27 (1996) p. S151.CrossRefGoogle Scholar
48.Seifert, W., Borgström, M., Deppert, K., Dick, K.A., Johansson, J., Larsson, M.W., Mårtensson, T., Sköld, N., Svensson, C.P.T., Wacaser, B.A., Wallenberg, L.R., and Samuelson, L., J. Cryst. Growth 272 (2004) p. 211.CrossRefGoogle Scholar
49.Johansson, J., Svensson, C.P.T., Mårtensson, T., Samuelson, L., and Seifert, W., J. Phys. Chem. B 109 (2005) p. 13567.CrossRefGoogle Scholar
50.Johansson, J., Karlsson, L.S., Svensson, C.P.T., Mårtensson, T., Wacaser, B.A., Deppert, K., Samuelson, L., and Seifert, W., Nat. Mater. 5 (2006) p. 574.CrossRefGoogle Scholar
51.Karlsson, L.S., Larsson, M.W., Malm, J.-O., Wallenberg, L.R., Dick, K.A., Deppert, K., Seifert, W., and Samuelson, L., NANO 1 (2006) p. 139.CrossRefGoogle Scholar
52.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., and Koguchi, M., Appl. Phys. Rev. 77 (1995) p. 447.CrossRefGoogle Scholar
53.Tsai, C.T. and Williams, R.S., J. Mater. Res. 1 (1986) p. 352.Google Scholar
54.Veresegyhazy, R., Mojzes, I., and Pecz, B., Vacuum 36 (1986) p. 547.CrossRefGoogle Scholar
55.Veresegyhazy, R., Pecz, B., and Mojzes, I., Physica Status Solidi 94 (1986) p. K11.CrossRefGoogle Scholar
56.Hiscocks, S.E.R. and Hume-Rothery, W., Proc. R. Soc. (London) 282 (1964) p. 318.Google Scholar
57.Jensen, L.E., Björk, M.T., Jeppesen, S., Persson, A.I., Ohlsson, B.J., and Samuelson, L., Nano Lett. 4 (2004) p. 1961.CrossRefGoogle Scholar
58.Johansson, J., Wacaser, B.A., Dick, K.A., and Seifert, W., Nanotechnology 17 (2006) p. S355.CrossRefGoogle Scholar
59.Koguchi, M., Kakibayashi, H., Yazawa, M., Jiruma, K., and Katsuyama, T., Jpn. J. Appl. Phys. 31 (1992) p. 2061.CrossRefGoogle Scholar
60.Dick, K.A., Deppert, K., Karlsson, L.S., Seifert, W., Wallenberg, L.R., and Samuelson, L., Nano Lett. 6 (2006) p. 2842.CrossRefGoogle Scholar