Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:50:38.615Z Has data issue: false hasContentIssue false

Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

Published online by Cambridge University Press:  09 June 2017

Yuri Shvyd’ko
Affiliation:
Advanced Photon Source, Argonne National Laboratory, USA; [email protected]
Vladimir Blank
Affiliation:
Technological Institute for Superhard and Novel Carbon Materials, Russian Federation; [email protected]
Sergey Terentyev
Affiliation:
Department of Single Crystal Growth, Technological Institute for Superhard and Novel Carbon Materials, Russian Federation; [email protected]
Get access

Abstract

Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. They are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Field, J.E., Ed., The Properties of Natural and Synthetic Diamond (Academic Press, London, 1992).Google Scholar
Prelas, M.A., Popovici, G., Bigelow, L.K., Eds., Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).Google Scholar
Wei, L., Kuo, P.K., Thomas, R.L., Anthony, T.R., Banholzer, W.F., Phys. Rev. Lett. 70, 3764 (1993).Google Scholar
Giles, C., Adriano, C., Lubambo, A.F., Cusatis, C., Irineu, M., Hönnicke, M.G., J. Synchrotron Radiat. 12, 349 (2005).Google Scholar
Stoupin, S., Shvyd’ko, Y.V., Phys. Rev. Lett. 104, 085901 (2010).Google Scholar
Stoupin, S., Shvyd’ko, Y.V., Phys. Rev. B Condens. Matter 83, 104102 (2011).Google Scholar
Shvyd’ko, Y.V., Stoupin, S., Cunsolo, A., Said, A., Huang, X., Nat. Phys. 6, 196 (2010).Google Scholar
Shvyd’ko, Y.V., Stoupin, S., Blank, V., Terentyev, S., Nat. Photonics 5, 539 (2011).Google Scholar
Als-Nielsen, J., Freund, A.K., ESRF Newsletter 13, 4 (1992).Google Scholar
Khounsary, A.M., Smither, R.K., Davey, S., Purohit, A., Proc. SPIE 1739, 628 (1993).Google Scholar
Berman, L.E., Hastings, J., Siddons, D.P., Koike, M., Stojanoff, V., Hart, M., Nucl. Instrum. Methods Phys. Res. A 334, 617 (1993).Google Scholar
Berman, L.E., Hastings, J., Siddons, D.P., Koike, M., Stojanoff, V., Hart, M., Nucl. Instrum. Methods Phys. Res. A 329, 555 (1993).Google Scholar
Als-Nielsen, J., Freund, A., Wulff, M., Hanfland, M., Häusermann, D., Nucl. Instrum. Methods Phys. Res. B 94, 348 (1994).Google Scholar
Freund, A.K., Opt. Eng. 34, 432 (1995).CrossRefGoogle Scholar
Pal’yanov, Y., Malinovsky, Y., Borzdov, Y.M., Khokryakov, A.F., Dokl. Akad. Nauk SSSR 315, 233 (1990).Google Scholar
Sumiya, H., Satoh, S., Diam. Relat. Mater. 5, 1359 (1996).Google Scholar
Sellschop, J.P.F., Connell, S.H., Nilen, R.W.N., Detlefs, C., Freund, A.K., Hoszowska, J., Hustache, R., Burns, R.C., Rebak, M., Hansen, J.O., Welch, D.L., Hall, C.E., New Diam. Front. Carbon Technol. 10, 253 (2000).Google Scholar
Sumiya, H., Toda, N., Satoh, S., New Diam. Front. Carbon Technol. 10, 233 (2000).Google Scholar
Yabashi, M., Goto, S., Shimizu, Y., Tamasaku, K., Yamazaki, H., Yoda, Y., Suzuki, M., Ohishi, Y., Yamamoto, M., Ishikawa, T., AIP Conf. Proc. 879, 922 (2007).Google Scholar
Burns, R.C., Chumakov, A.I., Connell, S.H., Dube, D., Godfried, H.P., Hansen, J.O., Härtwig, J., Hoszowska, J., Masiello, F., Mkhonza, L., Rebak, M., Rommevaux, A., Setshedi, R., Van Vaerenbergh, P., J. Phys. Condens. Matter 21, 364224 (2009).Google Scholar
Macrander, A., Synchrotron Radiat. News 24, 6 (2011).Google Scholar
Polyakov, S.N., Denisov, V.N., Kuzmin, N.V., Kuznetsov, M.S., Martyushov, S.Y., Nosukhin, S.A., Terentyev, S.A., Blank, V.D., Diam. Relat. Mater. 20, 726 (2011).Google Scholar
Sumiya, H., Tamasaku, K., Jpn. J. Appl. Phys. 51, 090102 (2012).CrossRefGoogle Scholar
Stoupin, S., Antipov, S., Butler, J.E., Kolyadin, A.V., Katrusha, A., J. Synchrotron Radiat. 23, 1118 (2016).Google Scholar
Terentyev, S., Blank, V., Kolodziej, T., Shvyd’ko, Y., Rev. Sci. Instrum. 87, 125117 (2016).Google Scholar
Terentyev, S., Blank, V., Polyakov, S., Zholudev, S., Snigirev, A., Polikarpov, M., Kolodziej, T., Qian, J., Zhou, H., Shvyd’ko, Y., Appl. Phys. Lett. 107, 111108 (2015).CrossRefGoogle Scholar
Leipunskii, O.I., Usp. Khim. 8, 15191538 (1939).Google Scholar
Berman, R., Simon, S.F., Z. Elektrochem. 59, 333 (1955).Google Scholar
Bundy, F.P., Physica A 156, 169 (1989).Google Scholar
Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H., Nature 176, 51 (1955).Google Scholar
Wentorf, R.H., J. Phys. Chem. 75, 1833 (1971).Google Scholar
Vagarali, S., Lee, M., DeVries, R.C., J. Hard Mater. 1, 233 (1990).Google Scholar
Burns, R., Hansen, J., Spits, R., Sibanda, M., Welbourn, C., Welch, D., Diam. Relat. Mater. 8, 1433 (1999).Google Scholar
Kanda, H., Braz. J. Phys. 30, 482 (2000).Google Scholar
Macrander, A.T., Krasnicki, S., Zhong, Y., Maj, J., Chu, Y.S., Appl. Phys. Lett. 87, 194113 (2005).Google Scholar
Zhong, Y., Macrander, A.T., Krasnicki, S., Chu, Y.S., Maj, J., Assoufid, L., Qian, J., J. Phys. D Appl. Phys. 40, 5301 (2007).Google Scholar
Kim, K.-J., Shvyd’ko, Y., Reiche, S., Phys. Rev. Lett. 100, 244802 (2008).Google Scholar
Kim, K.-J., Shvyd’ko, Y.V., Phys. Rev. Spec. Top. Accel. Beams 12, 030703 (2009).Google Scholar
Polikarpov, M., Snigireva, I., Morse, J., Yunkin, V., Kuznetsov, S., Snigirev, A., J. Synchrotron Radiat. 22, 23 (2015).Google Scholar
Nöhammer, B., Hoszowska, J., Freund, A.K., David, C., J. Synchrotron Radiat. 10, 168 (2003).Google Scholar
Kolodziej, T., Vodnala, P., Terentyev, S., Blank, V., Shvyd’ko, Y., J. Appl. Crystallogr. 49, 1240 (2016).Google Scholar
Als-Nielsen, J., Freund, A., Grübel, G., Linderholm, J., Nielsen, M., del Rio, M., Sellschop, J., Nucl. Instrum. Methods Phys. Res. B 94, 306 (1994).Google Scholar
Mattenet, M., Schneider, T., Grübel, G., J. Synchrotron Radiat. 5, 651 (1998).Google Scholar
van Vaerenbergh, P, Detlefs, C., Härtwig, J., Lafford, T., Masiello, F., Roth, T., Schmid, W., Wattecamps, P., Zhang, L., Garrett, R., Gentle, I., Nugent, K., Wilkinset, S., AIP Conf. Proc. 1234, 229 (2010).Google Scholar
Fernandez, P., Graber, T., Lee, W.-K., Mills, D., Rogers, C., Assoufid, L., Nucl. Instrum. Methods Phys. Res. A 400, 476 (1997).Google Scholar
Fernandez, P., Lee, W., Mills, D., Tajiri, G., Assoufid, L., Nucl. Instrum. Methods Phys. Res. A 459, 347 (2001).Google Scholar
Goto, S., Yamazaki, H., Shimizu, Y., Suzuki, M., Kawamura, N., Mizumaki, M., Yabashi, M., Tamasaku, K., Ishikawa, T., Proc. SPIE 8502, 85020A (2012).Google Scholar
Zhu, D., Feng, Y., Stoupin, S., Terentyev, S.A., Lemke, H.T., Fritz, D.M., Chollet, M., Glownia, J.M., Alonso-Mori, R., Sikorski, M., Song, S., van Driel, T.B., Williams, G.J., Messerschmidt, M., Boutet, S., Blank, V.D., Shvyd’ko, Yu.V., Robert, A., Rev. Sci. Instrum. 85, 063106 (2014).Google Scholar
Stoupin, S., Terentyev, S.A., Blank, V.D., Shvyd’ko, Y.V., Goetze, K., Assoufid, L., Polyakov, S.N., Kuznetsov, M.S., Kornilov, N.V., Katsoudas, J., Alonso-Mori, R., Chollet, M., Feng, Y., Glownia, J.M., Lemke, H., Robert, A., Song, S., Sikorski, M., Zhu, D., J. Appl. Crystallogr. 47, 1329 (2014).Google Scholar
Feng, Y., Alonso-Mori, R., Barends, T.R.M., Blank, V.D., Botha, S., Chollet, M., Damiani, D.S., Doak, R.B., Glownia, J.M., Koglin, J.M., Lemke, H.T., Messerschmidt, M., Nass, K., Nelson, S., Schlichting, I., Shoeman, R.L., Shvyd’ko, Yu.V., Sikorski, M., Song, S., Stoupin, S., Terentyev, S., Williams, G.J., Zhu, D., Robert, A., Boutet, S., J. Synchrotron Radiat. 22, 626 (2015).Google Scholar
Roseker, W., Franz, H., Schulte-Schrepping, H., Ehnes, A., Leupold, O., Zontone, F., Lee, S., Robert, A., Grübel, G., J. Synchrotron Radiat. 18, 481 (2011).Google Scholar
Osaka, T., Yabashi, M., Sano, Y., Tono, K., Inubushi, Y., Sato, T., Matsuyama, S., Ishikawa, T., Yamauchi, K., Opt. Express 21, 2823 (2013).Google Scholar
Stetsko, Y.P., Shvyd’ko, Y.V., Stephenson, G.B., Appl. Phys. Lett. 103, 173508 (2013).Google Scholar
Toellner, T.S., Hu, M., Sturhahn, W., Bortel, G., Alp, E.E., Zhao, J., J. Synchrotron Radiat. 8, 1082 (2001).Google Scholar
Yabashi, M., Tamasaku, K., Kikuta, S., Ishikawa, T., Rev. Sci. Instrum. 72, 4080 (2001).Google Scholar
Shvyd’ko, Y., Stoupin, S., Mundboth, K., Kim, J., Phys. Rev. A 87, 043835 (2013).Google Scholar
Stoupin, S., Shvyd’ko, Y.V., Shu, D., Blank, V.D., Terentyev, S.A., Polyakov, S.N., Kuznetsov, M.S., Lemesh, I., Mundboth, K., Collins, S.P., Sutter, J.P., Tolkiehn, M., Opt. Express 21, 30932 (2013).Google Scholar
Geloni, G., Kocharyan, V., Saldin, E., J. Mod. Opt. 58, 1391 (2011).Google Scholar
Saldin, E.L., Schneidmiller, E.A., Shvyd’ko, Y.V., Yurkov, M.V., Nucl. Instrum. Methods Phys. Res. A 475, 357 (2001).Google Scholar
Amann, J., Berg, W., Blank, V., Decker, F.-J., Ding, Y., Emma, P., Feng, Y., Frisch, J., Fritz, D., Hastings, J., Huang, Z., Krzywinski, J., Lindberg, R., Loos, H., Lutman, A., Nuhn, H.-D., Ratner, D., Rzepiela, J., Shu, D., Shvyd’ko, Yu., Spampinati, S., Stoupin, S., Terentyev, S., Trakhtenberg, E., Walz, D., Welch, J., Wu, J., Zholents, A., Zhu, D., Nat. Photonics 6, 693 (2012).Google Scholar
Stoupin, S., Blank, V., Terentyev, S., Polyakov, S., Denisov, V., Kuznetsov, M., Shvyd’ko, Y., Shu, D., Emma, P., Maj, J., McNulty, I., Diam. Relat. Mater. 33, 1 (2013).Google Scholar
Snigirev, A., Kohn, V., Snigireva, I., Lengeler, B., Nature 384, 49 (1996).Google Scholar
Fox, O.J.L., Alianelli, L., Malik, A.M., Pape, I., May, P.W., Sawhney, K.J.S., Opt. Express 22, 7657 (2014).Google Scholar
Terentyev, S., Polikarpov, M., Snigireva, I., Di Michiel, M., Zholudev, S., Yunkin, V., Kuznetsov, S., Blank, V., Snigirev, A., J. Synchrotron Radiat. 24, 103 (2017).Google Scholar
Antipov, S., Baryshev, S.V., Butler, J.E., Antipova, O., Liu, Z., Stoupin, S., J. Synchrotron Radiat. 23, 163 (2016).Google Scholar
Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C., Dartyge, E., Fontaine, A., Giorgetti, C., Pizzini, S., J. Appl. Crystallogr. 27, 232 (1994).CrossRefGoogle Scholar
Suzuki, M., Inubushi, Y., Yabashi, M., Ishikawa, T., J. Synchrotron Radiat. 21, 466 (2014).Google Scholar
Logan, J., Harder, R., Li, L., Haskel, D., Chen, P., Winarski, R., Fuesz, P., Schlagel, D., Vine, D., Benson, C., McNalty, I., J. Synchrotron Radiat. 23, 1210 (2016).Google Scholar
Karvinen, P., Rutishauser, S., Mozzanica, A., Greiffenberg, D., Juranic, P., Menzel, A., Lutman, A., Krzywinski, J., Fritz, D., Lemke, H., Cammarata, M., David, C., Opt. Lett. 37, 5073 (2012).Google Scholar
Makita, M., Karvinen, P., Zhu, D., Juranic, P.N., Grnert, J., Cartier, S., Jungmann-Smith, J.H., Lemke, H.T., Mozzanica, A., Nelson, S., Patthey, L., Sikorski, M., Song, S., Feng, Y., David, C., Optica 2, 912 (2015).Google Scholar
Degenhardt, M., Aprigliano, G., Schulte-Schrepping, H., Hahn, U., Grabosch, H.-J., Worner, E., J. Phys. Conf. Ser. 425, 192022 (2013).Google Scholar
Shepherd, M.R., AIP Conf. Proc. 1182, 816 (2009).Google Scholar
Shvyd’ko, Y., X-Ray Optics—High-Energy-Resolution Applications, Springer Series in Optical Sciences (Springer, Berlin, 2004), vol. 98.Google Scholar
Huang, X.R., Siddons, D.P., Macrander, A.T., Peng, R.W., Wu, X.S., Phys. Rev. Lett. 108, 224801 (2012).Google Scholar