Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T13:30:01.342Z Has data issue: false hasContentIssue false

Diamond Synthesis: The Russian Connection

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Several 40-year anniversaries of the modern area of the synthesis of diamond at high pressures and temperatures (HPHT) have come and gone. If you are a proponent of the Norton Company, this first synthesis would be somewhere between 1948 and 1950. ASEA's Feb. 15, 1953, accomplishment was noted at an international meeting in 1993 on high pressure (AIRAPT) with a small session that included papers by ASEA and General Electric (GE) representatives. The GE success in the Hall experiment of Dec. 16, 1954 (announced in February 1955), was marked only in the personal memories of the remaining members of that diamond team. DeBeers recognizes the ASEA date, but if it celebrates the 40th anniversary of its own in-house accomplishment, it will do so late in 1998; the Russians will do so on or about the year 2000. In any case, the basic, muchcopied GE HPHT process is repeated thousands of times each day at sites all over the world (Figure 1) to make a product that has replaced 90% of natural diamond as an abrasive and has given to technology new superhard products in forms unavailable from the earth (Figure 2). All manufacturers are in fierce competition for a total business that probably is in the range of $1 billion per year, and engineers spend their time primarily in finer tuning for faster growth, greater yields, lower costs, and higher quality crystals. The HPHT process seems to have survived the threat of the low-pressure chemical vapor deposition (CVD) process with respect to abrasive grain and gem-quality stones. However, the low-pressure process has some unique capabilities that obviously cannot be achieved by HPHT, and the product is finding niches in specialized applications (Figures 3 and 4).

Type
Links of Science & Technology
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nassau, K. and Nassau, J., Part I Lapidary J. 32 (1978) p. 76; Part II: Lapidary J. 32 (1978) p. 490.Google Scholar
2.Liander, H., Ind. Diamond Rev. (November 1980) p. 412.Google Scholar
3.Derjaguin, B.V. and Fedoseev, D.V., Diamonds Wrought by Man (MIR Publishers, Moscow, 1980) original Russian version; 1985, English translation.Google Scholar
4.Davies, G., Diamond (Adam Hilger Ltd., Bristol, U.K., 1984).Google Scholar
5.Nassau, K., J. Gemmology XIX (1985) p. 660.CrossRefGoogle Scholar
6.Lundblad, E.G., response to Reference 5, J. Gemmology 20 (1986) p. 134.CrossRefGoogle Scholar
7.Hall, H.T., Am. Assoc. Cryst. Growth 16 (1986) p. 2.Google Scholar
8.Strong, H.M., Am. J. Phys. 57 (1989) p. 794.CrossRefGoogle Scholar
9.Lundblad, E., Indiaqua 55 (1990) p. 17.Google Scholar
10.DeVries, R.C., J. Mater. Educ. 13 (1991) p. 387.Google Scholar
11.Nassau, K., Lapidary J. (November 1991) p. 97.Google Scholar
12.Nassau, K., Am. Assoc. Cryst. Growth Newsletter 22 (1992) p. 6.Google Scholar
13.Angus, J., Am. Assoc. Cryst. Growth Newsletter 23 (1993) p. 9.Google Scholar
14.Strong, H.M., Am. J. Phys. 57 (1989) p. 794.CrossRefGoogle Scholar
15.Strong, H.M., General Electric Corporate Research and Development Report No. 85CRD138 (July 1985) Class 1, p. 48.Google Scholar
16.Bovenkerk, H.P., Bundy, F.P., Chrenko, R.M., Codella, P.J., Strong, H.M., and Wentorf, R.H. Jr., Nature 365 (1993) p. 19.CrossRefGoogle Scholar
17.Hazen, R.M., The New Alchemists, Breaking Through the Barriers of High Pressure (Times Books, Random House, 1993).Google Scholar
18.Lundblad, E.G., High Pressure Science and Technology—1993, edited by Schmidt, , Shaner, , Samara, , and Ross, (AIP Conf. Proc. 309, Part I, AIP Press, New York, 1994) p. 503.Google Scholar
19.Bundy, F.P., same as Reference 18 (1994) p. 495.Google Scholar
20.Bundy, F.P., Koninkl. Nederl. Akademie Van Vetenschappen-Amsterdam (Proc. Series B 5, Rooseboom Lecture, 1969) p. 72.Google Scholar
21.Bundy, F.P., Physica A 156 (1989) p. 169.CrossRefGoogle Scholar
22.Bundy, F.P., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M.D., Bogy, D.B., Donley, M.S., and Field, J.E. (Mater. Res. Soc. Symp. Proc. 383, Pittsburgh, 1995) p. 3.Google Scholar
23.Rossini, F.D. and Jessup, R.S., J. Res. NBS 21 (1938) p. 491.Google Scholar
24.Prosen, E.J., Jessup, R.S., and Rossini, F.D., J. Res. NBS 33 (1944) p. 447.Google Scholar
25.Leipunskii, O.I., Uspekhi Khim. 8 (1939) p. 1519.Google Scholar
26.Bridgman, P.W., J. Chem. Phys. 15 (1947) p. 92.CrossRefGoogle Scholar
27.Basset, J., Compt. Rend. 208 (1938) p. 267.Google Scholar
28.Neuhas, A., Angew. Chem. 66 (1954) p. 525.CrossRefGoogle Scholar
29.Leipunskii, O.I., Vopr. Sovrem. Eksp. Teor. Fiz., edited by Aleksandrov, A.P. (Nauka, Leningrad, USSR, 1984) p. 68.Google Scholar
30.Mellor, D.P., Research 2 (1949) p. 314.Google Scholar
31.Goranson, R.W., Sci. Mon. 51 (1940) p. 524.Google Scholar
32.Eyring, H. and Cagle, F.W., Z. fur Elektrochemie 56 (1952) p. 480.Google Scholar
33.Moissan, H., The Electric Furnace (Edward Arnold, London, 1904).Google Scholar
34.Parsons, C.A., Engineering 105 (1918) p. 485.Google Scholar
35.Ruff, O., Z. anorg. Chem. 99 (1917) p. 73.CrossRefGoogle Scholar
36.Hershey, J.W., Trans. Kansas Acad. Sci. 40(1937) p. 109.CrossRefGoogle Scholar
37.Simon, F., Die Bestimmung der freien Energie, Thermische Eigenschaften der Stoffe, edited by Henning, F. and Springer, Julius (Berlin, 1926) p. 375.Google Scholar
38.Wiberg, E., Die Chemische Affinitat (Walter de Gruyter and Co., Berlin, 1951) p. 254.CrossRefGoogle Scholar
39.Liander, H., ASEA Journal 28 (1955) p. 97.Google Scholar
40.Liander, H. and Lundblad, E., Arkiv. Kemi 16 (1960) p. 1939.Google Scholar
41.Bovenkerk, H.P., Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H. Jr., Nature 184 (1959) p. 1094.CrossRefGoogle Scholar
42.Berman, R. and Simon, F.E., Z. Elektrochem. 59 (1955) p. 333.Google Scholar
43.Liljeblad, R., Arkiv Kemi 8 (1955) p. 423.Google Scholar
44.Bundy, F.P., Bovenkerk, H.P., Strong, H.M., Wentorf, R.H. Jr., Chem. Phys. 35 (1961) p. 383.Google Scholar
45. General Electric Research Laboratory, Research Information Services, Press Release, March 1955.Google Scholar
46.Berman, R. and Thewlis, J., Nature 176 (1955) p. 834.CrossRefGoogle Scholar
47.Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Nature 176 (1955) p. 51.CrossRefGoogle Scholar
48.Slawson, C.B., Am. Mineral. 38 (1953) p. 50.Google Scholar
49.Derjaguin, B.V. and Fedoseev, D.V., Diamonds Wrought by Man (Moscow, MIR Publishers; 1980, original Russian version; 1985, English translation).Google Scholar
50. Anonymous, Sinteticheskiye Almazy, no. 2 (1973, in Russian) p. 5.Google Scholar
51.Wende, D., Der Ausschnitt (Wochenpost, DDR) 49/84 (1984, in German) p. 13.Google Scholar
52.Varnin, V.P., in Proc. 1st Int. Seminar Diamond Films, edited by Zhitkovskii, B.D.. Spitsyn, B.V., and Belynii, A.F. (June 30–July 6, 1991) p. 197; Ser. Technol., Manufacture and Equipment, no. 4 (Moscow, 1991, in Russian).Google Scholar
53.Neuhaus, A., Forsch.-H., Freiberger, C102 (1961, in German) p. 20.Google Scholar
54.Bundy, F.P., J. Chem. Phys. 38 (1963) p. 631.CrossRefGoogle Scholar
55.Strong, H.M. and Wentorf, R.H. Jr., Naturwissenschaften 59 (1972) p. 1.CrossRefGoogle Scholar
56.von Bolton, W., Z. Elektrochem. 17 (1911) p. 971.Google Scholar
57.Badziag, P., Verwoerd, W.S., Ellis, W.P., and Greiner, N.R., Nature 343 (1990) p. 244.CrossRefGoogle Scholar
58.Stein, S.E., Nature 346 (1990) p. 517.CrossRefGoogle Scholar
59.Bundy, F.P., Science 146 (1964) p. 1673.CrossRefGoogle Scholar
60.Gunther, P.L., Geselle, P., and Rebentisch, W., Z. anorg. Chem. 250 (1943) p. 357.CrossRefGoogle Scholar
61.Burton, C.V., Nature 72 (1905) p. 397.CrossRefGoogle Scholar
62.Tammann, G., Z. anor. allgem. Chem. 115 (1921) p. 145.CrossRefGoogle Scholar
63.Eversole, W.G., U.S. Patent No. 3,030,187 (April 17, 1962); U.S. Patent No. 3,030,188 (April 17, 1962).Google Scholar
64.Angus, J.C. and Hayman, C.C., Science 241 (1988) p. 913.CrossRefGoogle Scholar
65.Angus, J.C., Proc. Electrochem. Soc. (Proc. 1st Int. Symp. Diamond Diamondlike Films, 1989) p. 1.Google Scholar
66.Angus, J.C., Buck, F.A., Sunkara, M., Groth, R.F., Hayman, C.C., and Gat, R., MRS Bulletin XIV (1989) p. 38.CrossRefGoogle Scholar
67.Meincke, H., Gemmologist 26 (1957) p. 46.Google Scholar
68.Brinkman, J.A., Meecham, C.J., and Dieckamp, H.M., U.S. Patent No. 3,142,539 (Sept. 28, 1964); U.S. Patent No. 3,175,885 (March 3, 1965).Google Scholar
69.Hibshman, H.J., U.S. Patent No. 3,371,996 (March 5, 1968).Google Scholar
70.Siemens, A-G. & Halske, , French Patent No. 1,366,544 (July 10, 1964).Google Scholar
71.Siemens, A-G. & Halske, , French Patent No. 1,367,368 (July 17, 1964).Google Scholar
72.Angus, J.C., Air Force Cambridge Research Laboratories Report, 66-107, AD 630-705 (January 31, 1966).Google Scholar
73.Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys. 39 (1968) p. 2915.CrossRefGoogle Scholar
74.Angus, J.C., U.S. Patent No. 3,630,6577; U.S. Patent No. 3,360,679 (Dec. 28, 1971).Google Scholar
75.Gardner, N.C., U.S. Patent No. 3,360,678 (Dec. 28, 1971).CrossRefGoogle Scholar
76.Angus, J.C. and Gardner, N.C., U.S. Patent No. 3,661,526 (May 9, 1972).Google Scholar
77.Oriani, R.A. and Rocco, W.A., GE Research Laboratory Memo No. MA36, Class IV, August 1957.Google Scholar
78.Spitsyn, B.V. and Derjaguin, B.V., USSR Patent No. 339,134 (May 5, 1980).Google Scholar
79.Spitsyn, B.V., Builov, L.L., and Derjaguin, B.V., Prog. Cryst. Growth Charact. 17 (1988) p. 79.CrossRefGoogle Scholar
80.Derjaguin, B.V., Fedoseev, D.V., Spitsyn, B.V., Lavrent'ev, A.V., Zubkov, V.M., Ryabov, V.A., Bochko, A.V., and Builov, L.L., USSR Patent No. 327,776 (April 30, 1983).Google Scholar
81.Derjaguin, B.V., Fedoseev, D.V., Lukyanovich, V.M., Spitsyn, B.V., Ryabov, V.A., and Lavrentyev, A.V., J. Cryst. Growth 2 (1968) p. 380.CrossRefGoogle Scholar
82.Derjaguin, B.V. and Fedoseev, D.B., Sci. Am. (November 1975) p. 102.Google Scholar
83.Derjaguin, B.V.et al., French Patent No. 2,089,794.Google Scholar
84.Derjaguin, B.V., Bakul, V.N., Fedoseev, D.V., Nikitin, Y.I., Bochko, A.V., Ryabov, V.A., and Varnin, V.P., German Patent No. 2,108,442 (Oct. 28, 1971).Google Scholar
85.Dshevitskii, B.E., Spitsyn, B.V., Kochkin, D.A., and Derjaguin, B.V., German Patent No. 2,021,792 (Nov. 18, 1971).Google Scholar
86.Gulbrandsen, E.A., Andrew, K.F., and Brassart, F.A., J. Electrochem. Soc. 112 (1965) p. 49.CrossRefGoogle Scholar
87.Derjaguin, B.V., Ryabov, V.A., Fedoseev, D.V., Spitsyn, B.V., Lukyanovich, V.M., and Uspenskaya, K.S., 2nd USSR Symp. Growth Processes Cryst. and Films of Semiconducting Compounds (Novosibirsk, 1969) p. 34.Google Scholar
88.Spitsyn, B.V., J. Cryst. Growth 99 (1990) p. 1162.CrossRefGoogle Scholar
89.Spitsyn, B.V., in Diamond and Diamondlike Films, 1st Int. Seminar Diamond Films, (June 30–July 6, 1991); Ser. Technol., Manufacture and Equipment, no. 4, edited by B.V. Zhitkovski, B.V. Spitsyn, and A.F. Belynii (Moscow, 1991) p. 7.Google Scholar
90.Spitsyn, B.V., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, Y., Murakawa, M., and Feldman, A. (Elsevier Science Publishers B.V., 1991) p. 475.Google Scholar
91.Spitsyn, B.V., in Proc. 3rd Int. Symp. Diamond Mater., edited by Dismukes, J.P., Ravi, K.V., Spear, K.E., Lux, B., and Setaka, N. (Honolulu, May 16–21, 1993) p. 345.Google Scholar
92.Spitsyn, B.V. and Smol'yaninov, A.V., Authors Certificate No. 987912 (Sept. 9, 1990).Google Scholar
93.Angus, J.S., Poferl, D.J., Gardner, N.C., Chauhan, S., Dyble, T.J., and Sung, P., paper presented at Int. Conf. Synthetic Diamonds, Kiev, USSR, Sept. 14–18, 1971; published in Sin. Almazy 3 (1971) p. 38.Google Scholar
94.Varnin, V.P., private communication with Badzian, A. (1990).Google Scholar
95.Derjaguin, B.V., Fedoseev, D.V., Bakul, V.N., Ryabov, V.A., Spitsyn, B.V., Nikitin, Yu.I., Bochko, A.V., Varnin, V.P., Laurent'ev, A.V., and Primatchuk, V.L., Physicochemical Synthesis of Diamond from Gas (Tecknika, Kiev, Ukr. SSR, 1971) p. 44.Google Scholar
96.Bochko, A.V. and Derjaguin, B.V., Dokl. Akad. Nauk SSSR 196 (1971) p. 1056.Google Scholar
97.Derjaguin, B.V., Fedoseev, D.V., Polyanskaya, N.D., and Statenkova, E.V., Kristallografiya 21 (1976) p. 433.Google Scholar
98.Derjaguin, B.V., Spitsyn, B.V., Builov, L.L., Klochkov, A.A., Gorodetskii, A.E., and Smol'yaninov, A.V., Dokl. Akad. Nauk SSSR 231 (1976) p. 333.Google Scholar
99.Derjaguin, B.V., Fedoseev, D.V., Uspenskaya, K.S., and Varnin, V.P., Zhurnal Fizicheskoi Khimii 47 (1973) p. 24; B.V. Derjaguin, D.V. Fedoseev, K.S. Uspen-skaya, and V.P. Varnin, Zhurnal Fizicheskoi Khimii 47 (1973) p. 28; B.V. Derjaguin, D.V. Fedoseev, K.S. Uspen-skaya, and V.P. Varnin, Zhurnal Fizicheskoi Khimii 47 (1973) p. 32.Google Scholar
100.Derjaguin, B.V. and Fedoseev, D.V., The Growth of Diamond and Graphite From the Gas Phase (Nauka, Moscow, 1977).Google Scholar
101.Spitsyn, B.V., Builov, L.L., and Derjaguin, B.V., J. Cryst. Growth 52 (1981) p. 219.CrossRefGoogle Scholar
102.Chauhan, S.P., Angus, J.C., and Gardner, N.C., J. Appl. Phys. 47 (1976) p. 4746.CrossRefGoogle Scholar
103.Varnin, V.P.et al., Zh. Eksperim Teor. Fiz. 69 (1975) p. 69.Google Scholar
104.Varnin, V.P., Derjaguin, B.V., Fedoseev, D.V., Teremetskays, I.G., and Khodan, A.N., Kristallografia 22 (1977) p. 893.Google Scholar
105.Fedoseev, D.V. and Tolmachev, Yu.N., Izv. Akad. Nauk SSR, Ser. Khim. 6 (1979) p. 1180.Google Scholar
106.Fedoseev, D.V., Tolmachev, Yu.N., and Bukhovets, V.L., Dokl. Akad. Nauk SSSR 247 (1979) p. 1427.Google Scholar
107.Fedoseev, D.V., Izv. Akad. Nauk SSR, Ser. Khim. 9 (1979) p. 2157.Google Scholar
108.Fedoseev, D.V., Bukhovets, V.L., Varshavskaya, I.G., Lavrentev, A.V., and Derjaguin, B.V., Carbon 21 (1983) p. 237.CrossRefGoogle Scholar
109.Fedoseev, D.V., Varshavskaya, I.G., Lavrent'ev, A.V., Derjaguin, B.V., Bukhovets, V.L., Matveev, V.V., Rozinov, V.L., and Karpukhina, T.A., Dokl. Akad. Nauk SSR 270 (1983) p. 918.Google Scholar
110.Alam, M., DebRoy, T., Roy, R., and Breval, E., Carbon 27 (1989) p. 289.CrossRefGoogle Scholar
111.Alam, M., DebRoy, T., Roy, R., and Breval, E., Appl. Phys. Lett. 53 (1988) p. 1687.CrossRefGoogle Scholar
112.Kikuchi, N., Ohsawa, Y., and Suzuki, I., Diamond and Related Materials 2 (1993) p. 190.CrossRefGoogle Scholar
113.Ogale, S.B., Malshe, A.P., Kanetkar, S.M., and Kshirsagar, S.T., Solid State Communications 84 (1992) p. 371.CrossRefGoogle Scholar
114.Japanese Patent, Synthesis of Diamond (May 30, 1983); assigned to National Institute for Research on Inorganic Materials.Google Scholar
115.Matsumoto, S., Sato, Y., Kamo, M., Tanaka, J., and Setaka, N., Proc. 7th Int. Conf. Vac. Metall. 1 (1982) p. 386,091.Google Scholar
116.Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17 (1982) p. 3106.CrossRefGoogle Scholar
117.Bachmann, P.K. and Messier, R., C&E News (May 15, 1989) p. 24.Google Scholar
118.Enckevort, W.J.P. van, J. Hard Mater. 1 (1990) p. 247.Google Scholar
119.Hirose, Y., Jpn. J. Appl. Phys., Part 2 25 (1986) p. L519.CrossRefGoogle Scholar
120.Hirose, Y., in Proc. 1st Int. Conf. New Diamond Science and Technology, Japan New Diamond Forum, edited by Sasito, S., Fukunaga, O., and Yoshikawa, M. (KTK Scientific/Terra Scientific, Tokyo, 1988) p. 51.Google Scholar