Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T22:00:36.410Z Has data issue: false hasContentIssue false

Development of Platinum-Group-Metal Superalloys for High-Temperature Use

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Superalloys based on platinum-group metals are being developed for high-temperature applications. These alloys have two-phase structures comprising either ordered precipitates in a matrix analogous to the nickel-based superalloys or a fine dispersion of oxide particles in a matrix analogous to oxide-dispersion-strengthened nickel-based alloys. Currently, alloys based on iridium, rhodium, and platinum have been obtained. This article reviews the rationale of developments and the progress made in this area. Oxidation and compression tests as well as characterization with scanning electron microscopy and transmission electron microscopy were undertaken. These tests showed encouraging results, and further work is being done on new alloying additions and tensile testing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sims, C.T., Stoloff, N.S., and Hagel, W.C., in Superalloys II: High Temperature Materials for Aerospace and Industrial Power (Wiley InterScience, New York, 1987) p. 615.Google Scholar
2.Takeuchi, S. and Kuramoto, E., J. Phys. Soc. Jpn 31 (1971) p. 1282.CrossRefGoogle Scholar
3.Takeuchi, S. and Kuramoto, E., Acta Metall. 21 (1973) p. 415.CrossRefGoogle Scholar
4.Goward, G.W., Sur. Coat. Technol. 108–109 (1998) p. 73.CrossRefGoogle Scholar
5.Briant, C.L., in High-Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, 1994) p. 305.Google Scholar
6.Yamabe, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 35 (1996) p. 211.CrossRefGoogle Scholar
7.Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 36 (1997) p. 393.CrossRefGoogle Scholar
8.Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., in High-Temperature Ordered Intermetallic Alloys VII, edited by Koch, C.C., Liu, C.T., Stoloff, N.S., and Wanner, A. (Mater. Res. Soc. Symp. Proc. 460, Warrendale, PA, 1997) p. 701.Google Scholar
9.Yamabe-Mitarai, Y., Ro, Y., Maruko, T., and Harada, H., in Structural Intermetallics 1997 (The Minerals, Metals and Materials Society, Warrendale, PA, 1997) p. 805.Google Scholar
10.Yamabe-Mitarai, Y., Ro, Y., Maruko, T., and Harada, H., Metall. Mater. Trans. A 29A (1998) p. 537.CrossRefGoogle Scholar
11.Yamabe-Mitarai, Y., Ro, Y., Maruko, T., Yokokawa, T., and Harada, H., in Proc. 6th Liege Conf. on Materials for Advanced Power Engineering, EC 5, Part II, edited by Lecomte-Beckers, J., Schubert, F., and Ennis, P.J. (Forschungszentrum Jülich Energy Technology, Jülich, Germany, 1998) p. 1147.Google Scholar
12.Gu, Y.F., Yamabe-Mitarai, Y., and Harada, H., in Iridium, edited by Ohriner, E.K., Lanam, R.D., Panfilov, P., and Harada, H. (The Minerals, Metals and Materials Society, Warrendale, PA, 2000) p. 73.Google Scholar
13.Gu, Y.F., Yamabe-Mitarai, Y., Ro, Y., Yokokawa, T., and Harada, H., Metall. Mater. Trans. A 30A (1999) p. 2629.CrossRefGoogle Scholar
14.Gu, Y.F., Yamabe-Mitarai, Y., Yu, X.H., and Harada, H., Mater. Lett. A 41 (1999) p. 45.CrossRefGoogle Scholar
15.Gu, Y.F., Yamabe-Mitarai, Y., Nakazawa, S., Ro, Y., and Harada, H., Metall. Mater. Trans. A 33A (2002) p. 1281.CrossRefGoogle Scholar
16.Lupton, D., Adv. Mater. 5 (1990) p. 29.Google Scholar
17.Whalen, M.V., Platinum Met. Rev. 32 (1) (1988) p. 2.CrossRefGoogle Scholar
18.Fischer, B., Behrends, A., Freund, D., Lupton, F., and Merker, J., Platinum Met. Rev. 43 (1) (1999) p. 18.CrossRefGoogle Scholar
19.Merker, J., Lupton, F., Töpfer, M., and Knake, H., Platinum Met. Rev. 45 (2) (2001) p. 74.CrossRefGoogle Scholar
20.Thompson, F.A., Glass 7 (1990) p. 279.Google Scholar
21. Degussa AG, patent application DE 3 030 751 A1 (1980).Google Scholar
22. Johnson Matthey PLC, patent specification DE 3 102 342 C2 (1981).Google Scholar
23. Owens-Corning Fiberglass Corp., patent application WO 81/00977 (1979).Google Scholar
24.Glaswerke, Schott, patent specification DE 4417 495 C1 (1994).Google Scholar
25.Fischer, B., Freund, D., Merker, J., Völkl, R., and Lupton, D.F., in Proc. 8th Int. Conf. on Composites Engineering, edited by Hui, D. (University of New Orleans, New Orleans, LA, 2001) p. 249.Google Scholar
26.Hill, P.J., Biggs, T., Ellis, P., Hohls, J., Taylor, S., and Wolff, I.M., Mater. Sci. Eng., A A301 (2001) p. 167.CrossRefGoogle Scholar
27.Hill, P.J., Cornish, L.A., and Witcomb, M.J., in Proc. Int. Symp. on High Temperature Corrosion and Protection, edited by Narita, T., Maruyama, T., and Taniguchi, S. (Iron and Steel Institute of Japan, Tokyo, 2000) p. 185.Google Scholar
28.Yamabe-Mitarai, Y., Hong, M.H., Ro, Y., and Harada, H., Philos. Mag. Lett. 79 (9) (1999) p. 673.CrossRefGoogle Scholar
29.Hill, P.J., Cornish, L.A., Ellis, P., and Witcomb, M.J., J. Alloys Compd. 322 (2001) p. 166.CrossRefGoogle Scholar
30.Biggs, T., Hill, P.J., Cornish, L.A., and Witcomb, M.J., J. Phase Equilib. 22 (3) (2001) p. 214.CrossRefGoogle Scholar
31.Fischer, B., Behrends, A., Freund, D., Lupton, D., and Merker, J., in Proc. Creep Behavior of Advanced Materials for the 21st Century, edited by Mishra, R.S., Mukherjee, A.K., and Murty, K.L. (The Minerals, Metals and Materials Society, Warrendale, PA, 1999) p. 321.Google Scholar
32.Völkl, R., Freund, D., and Fischer, B., J. Test. Eval. 31 (1) (2003) p. 35.CrossRefGoogle Scholar
33.Süss, R., Freund, D., Völkl, R., Fischer, B., Hill, P.J., Ellis, P., and Wolff, I.M., Mater. Sci. Eng., A A338 (2002) p. 133.CrossRefGoogle Scholar
34.Hill, P.J., Yamabe-Mitarai, Y., Murakami, H., Cornish, L.A., Witcomb, M.J., Wolff, I.M., and Harada, H., in Structural Intermetallics 2001, edited by Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 527.Google Scholar
35.Zhao, J.-C., J. Mater. Res. 16 (2001) p. 1565.CrossRefGoogle Scholar
36.Biggs, T., Cornish, L.A., Witcomb, M.J., and Cortie, M.B., J. Phys. IV (France) 11 (2001) p. 493.Google Scholar
37.Cornish, L.A., Hohls, J., Hill, P.J., Prins, S., Süss, R., and Compton, D.N., in Proc. 34th Int. Conf. on Mining and Metallurgy, edited by Markovic, Z.S. and Zivkovic, D.T. (2002) p. 545.Google Scholar
38.Fairbank, G.B., Humpheys, C.J., Kelly, A., and Jones, C.N., Intermetallics 8 (2000) p. 1091.CrossRefGoogle Scholar
39.Fairbank, G.B., Humpheys, C.J., and Jones, C.N., presented at 2nd Int. Symp. on High-Temperature Materials 2001 (Tsukuba, Japan, May 31–June 2, 2001).Google Scholar
40.Völkl, R., Freund, D., Fischer, B., and Gohlke, D., in Proc. 8th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, Key Engineering Materials, Vols. 171–174, edited by Sakuma, T. and Yagi, K. (Trans Tech Publications, Utilkon-Zürich, Switzerland, 2000) p. 77.Google Scholar
41.Fischer, B., Freund, D., and Lupton, D., in Proc. Int. TMS Symp. on Rhenium and Rhenium Alloys (The Minerals, Metals and Materials Society, Warrendale, PA, 1997) p. 311.Google Scholar
42.Fischer, B., Freund, D., Brömel, T., Völkl, R., Daniel, J., Ross, W., Teschner, R., and Michelsen, C.-E., in Proc. 25th Int. Precious Metals Conf. [CD-ROM] (International Precious Metals Institute, Pensacola, FL, 2002) p. 99.Google Scholar
43.Fischer, B., Adv. Eng. Mater. 3 (10) (2001) p. 811.3.0.CO;2-#>CrossRefGoogle Scholar