Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T18:37:42.296Z Has data issue: false hasContentIssue false

Development of electron energy-loss spectroscopy in the biological sciences

Published online by Cambridge University Press:  13 January 2012

M.A. Aronova
Affiliation:
National Institutes of Health; [email protected]
R.D. Leapman
Affiliation:
National Institutes of Health; [email protected]
Get access

Abstract

The high sensitivity of electron energy-loss spectroscopy (EELS) for detecting light elements at the nanoscale makes it a valuable technique for application to biological systems. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, specific atoms bound to individual macromolecular assemblies, and the composition of bionanoparticles. EELS data can be acquired either in the fixed beam energy-filtered transmission electron microscope (EFTEM) or in the scanning transmission electron microscope, and recent progress in the development of both approaches has greatly expanded the range of applications for EELS analysis. Near single atom sensitivity is now achievable for certain elements bound to isolated macromolecules, and it becomes possible to obtain three-dimensional compositional distributions from sectioned cells through EFTEM tomography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Colliex, C., Brun, N., Gloter, A., Imhoff, D., Kociak, M., March, K., Mory, C., Stéphan, O., Tencé, M., Walls, M., Philos. Trans. R. Soc. London, Ser. A 367, 3845 (2009).Google Scholar
2.Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J., Pennycook, S.J., Phys. Rev. Lett. 92, 95502 (2004).CrossRefGoogle Scholar
3.Muller, D.A., Nat. Mater. 8, 263 (2009).CrossRefGoogle Scholar
4.Isaacson, M.S., in Principles and Techniques of Electron Microscopy, Hyatt, M.A., Ed. (Van Nostrand-Reinhold, New York, 1977), p. 1.Google Scholar
5.Shuman, H., Somlyo, A.P., Ultramicroscopy 21, 23 (1987).CrossRefGoogle Scholar
6.Isaacson, M., Johnson, D., Ultramicroscopy 1, 33 (1975).CrossRefGoogle Scholar
7.Sun, S., Shi, S., Hunt, J.A., Leapman, R.D., J. Microsc. 177, 18 (1995).CrossRefGoogle Scholar
8.Leapman, R.D., Fiori, C.E., Swyt, C.R., J. Microsc. 133, 239 (1984).CrossRefGoogle Scholar
9.Ottensmeyer, F.P., J. Ultrastruct. Res. 88, 121 (1984).CrossRefGoogle Scholar
10.Bazett-Jones, D.P., Leblanc, B., Herfort, M., Moss, T., Science 264, 1134 (1994).CrossRefGoogle Scholar
11.Bazett-Jones, D.P., Hendzel, M.J., Kruhlak, M.J., Micron 30, 151 (1999).CrossRefGoogle Scholar
12.Leapman, R.D., Rizzo, N.W., Ultramicroscopy 78, 251 (1999).CrossRefGoogle Scholar
13.Colliex, C., Mory, C., Biol. Cell 80, 175 (1994).CrossRefGoogle Scholar
14.Leapman, R.D., Jarnik, M., Steven, A.C., J. Struct. Biol. 120, 168 (1997).CrossRefGoogle Scholar
15.Leapman, R.D., Ornberg, R.L., Ultramicroscopy 24, 251 (1988).CrossRefGoogle Scholar
16.Leapman, R.D., Hunt, J.A., Buchanan, R.A., Andrews, S.B., Ultramicroscopy 49, 225 (1993).CrossRefGoogle Scholar
17.Leapman, R.D., J. Microsc. 210, 5 (2003).CrossRefGoogle Scholar
18.Shuman, H., Ultramicroscopy 6, 163 (1981).CrossRefGoogle Scholar
19.Krivanek, O.L., Ahn, C.C., Keeney, R.B., Ultramicroscopy 22, 103 (1987).CrossRefGoogle Scholar
20.van Schooneveld, M.M., Gloter, A., Stephan, O., Zagonel, L.F., Koole, R., Meijerink, A., Mulder, W.J.M., de Groot, F.M.F., Nat. Nanotechnol. 5, 538 (2010).CrossRefGoogle Scholar
21.Sousa, A.A., Aronova, M.A., Wu, H., Sarin, H., Griffiths, G.L., Leapman, R.D., Nanomedicine 4, 391 (2009).CrossRefGoogle Scholar
22.Leapman, R.D., Sun, S., Ultramicroscopy 59, 71 (1995).CrossRefGoogle Scholar
23.Aronova, M.A., Sousa, A.A., Leapman, R.D., Micron 42, 252 (2011).CrossRefGoogle Scholar
24.Krivanek, O.L., Gubbens, A.J., Dellby, N., Meyer, C.E., Microsc. Microanal. Microstruct. 3, 187 (1992).CrossRefGoogle Scholar
25.Jeanguillaume, C., Colliex, C., Ultramicroscopy 28, 252 (1989).CrossRefGoogle Scholar
26.Hunt, J.A., Williams, D.B., Ultramicroscopy 38, 47 (1991).CrossRefGoogle Scholar
27.Goping, G., Pollard, H.B., Srivastava, M., Leapman, R.D., Microsc. Res. Tech. 61, 448 (2003).CrossRefGoogle Scholar
28.Yakovlev, S., Misra, M., Shi, S., Firlar, E., Libera, M., Ultramicroscopy 110, 866 (2010).CrossRefGoogle Scholar
29.Sousa, A., Aitouchen, A., Libera, M., Ultramicroscopy 106, 130 (2006).CrossRefGoogle Scholar
30.Hongpaisan, J., Pivovarova, N.B., Colgrove, S.L., Leapman, R.D., Friel, D.D., Andrews, S.B., J. Gen. Physiol. 118, 101 (2001).CrossRefGoogle Scholar
31.Aronova, M.A., Kim, Y.C., Pivovarova, N.B., Andrews, S.B., Leapman, R.D., Ultramicroscopy 109, 201 (2009).CrossRefGoogle Scholar
32.Fukunaga, M., Lia, T.-Q., van Gelderen, P., de Zwarta, J.A., Shmuelia, K., Yaoa, B., Lee, J., Maric, D., Aronova, M.A., Zhang, G., Leapman, R.D., Schenck, J.F., Merkle, H., Duyn, J.H., Proc. Natl. Acad. Sci. U.S.A. 107, 3834 (2010).CrossRefGoogle Scholar
33.Xie, J., Zhang, F., Aronova, M., Zhu, L., Lin, X., Quan, Q., Liu, G., Zhang, G., Choi, K.Y., Kim, K., Sun, X., Lee, S., Sun, S., Leapman, R., Chen, X., ACS Nano 5, 3043 (2011).CrossRefGoogle Scholar
34.Midgley, P.A., Weyland, M., Ultramicroscopy 96, 413 (2003).CrossRefGoogle Scholar
35.Leapman, R.D., Kocsis, E., Zhang, G., Talbot, T.L., Laquerriere, P., Ultramicroscopy 100, 115 (2004).CrossRefGoogle Scholar
36.Boudier, T., Lechaire, J.P., Frébourg, G., Messaoudi, C., Mory, C., Colliex, C., Gaill, F., Marco, S., J. Struct. Biol. 151, 151 (2005).CrossRefGoogle Scholar
37.Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J., Baumeister, W., J. Struct. Biol. 120, 276 (1997).CrossRefGoogle Scholar
38.Aronova, M.A., Kim, Y.C., Harmon, R.H., Sousa, A.A., Zhang, G., Leapman, R.D., J. Struct. Biol. 160, 35 (2007).CrossRefGoogle Scholar
39.Kremer, J.S., Mastronarde, D.N., McIntosh, J.R., J. Struct. Biol. 116, 168 (1997).Google Scholar
40.Aronova, M.A., Kim, Y.C., Zhang, G., Leapman, R.D., Ultramicroscopy 107, 232 (2007).CrossRefGoogle Scholar
41.Aronova, M.A., Sousa, A.A., Zhang, G., Leapman, R.D., J. Microsc. 239, 223 (2010).CrossRefGoogle Scholar
42.Mory, C., Colliex, C., Ultramicroscopy 28, 339 (1989).CrossRefGoogle Scholar
43.Leapman, R.D., in Transmission Electron Energy Loss Spectroscopy in Materials Science and the EELS Atlas, 2nd Edition, Ahn, C., Ed. (Wiley-VCH, Berlin, 2004), C. 3, p. 49.Google Scholar
44.Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464, 571 (2010).CrossRefGoogle Scholar
45.Egerton, R.F., Wang, F., Crozier, P.A., Microsc. Microanal. 12, 65 (2006).CrossRefGoogle Scholar
47.Somlyo, A.V., Broderick, R., Shuman, H., Buhle, E.L. Jr., Somlyo, A.P., Proc. Natl. Acad. Sci. U.S.A. 85, 6222 (1988).CrossRefGoogle Scholar
46.Schlossmacher, P., Klenov, D.O., Freitag, B., Harrach, H.S., Microsc. Today 18, 14 (2010).CrossRefGoogle Scholar
48.Powell, R.D., Hainfeld, J.F., Microsc. Res. Tech. 42, 2 (1998).3.0.CO;2-Y>CrossRefGoogle Scholar
49.Robinson, J.M., Takizawa, T., J. Microsc. 235, 259 (2009).CrossRefGoogle Scholar