Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T05:50:58.891Z Has data issue: false hasContentIssue false

Development of Direct Drive, High-Gain Capsules for Inertial Fusion: A Materials Challenge*

Published online by Cambridge University Press:  29 November 2013

J. H. Campbell*
Affiliation:
Lawrence Livermore National Laboratory
Get access

Abstract:

The application of Inertial Confinement Fusion to power production requires the development of a high-yield fusion capsule. Theoretical design calculations suggest that a single shell capsule with a uniformly distributed deuterium-tritium (DT) fuel layer on the inside surface could give the desired high-gain performance when directly driven with 0.35 μm laser light. This design requires operation at cryogenic temperatures necessary to condense DT (20-30 K) and a means of levitating the fuel layer inside the capsule. On e recently suggested method for making this capsule is to use a rigid foam matrix to support the condensed DT in a spherical shell configuration. For such a capsule to be successfully fielded, a number of critical materials problems must be solved.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

References

1.Bruechner, K.S. and Jorna, Siebe, “Laser-Driven Fusion,” Reviews of Modern Physics, 46, 2 (April 1974) p. 325.CrossRefGoogle Scholar
2.Johnson, T.H., “Inertial Confinement Fusion: Review and Perspective,” Proceeding of the IEEE, 72 (May 1984) p. 548.CrossRefGoogle Scholar
3.Nuckolls, J., Wood, L., Thiessen, A., and Zimmerman, G., “Laser Compression of Matter to Super-High Densities; Thermo Nuclear (CTR) Applications,” Nature, 239 (1972) p. 139.CrossRefGoogle Scholar
4.Duderstadt, J.J. and Moses, G.A., Inertial Confinement Fusion, John Wiley and Sons, New York, 1982.Google Scholar
5.Nuckolls, J.H., “The Feasibility of Inertial Confinement Fusion,” Physics Today, 35, 9 (1982) p. 24.CrossRefGoogle Scholar
6.Craxton, R.S., McCrory, R.L., and Soures, J.M., “Progress in Laser Fusion,” Sci. Am., 255 (1986) p. 68.CrossRefGoogle Scholar
7.Ze, F., Suter, L.J., Lane, S.M., Campbell, E.M., Mead, W.C., Lindl, J.D., Rosen, M.D., Phillion, D.W., Hatcher, C.W., Drake, R.P., Hildum, J.S., and Manes, K.R., “Compression Measurements in Ablatively Driven Inertial Confinement Fusion,” Plasma Phys. of Controlled Fusion, 10 (1986) p. 33.Google Scholar
8.Rosencwaig, A., Dressler, J.L., Koo, J.C., and Hendricks, CD., “Laser Fusion Hollow Glass Microspheres by the Liquid Droplet Method,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-81421 (1978).Google Scholar
9.Nogami, M., Hayakawa, J., and Moriya, T., “Fabrication of Hollow Glass Microspheres in the Na2O-B2O3-SiO2 System from Metal Alkoxides,” J. Material Sci., 17 (1982) p. 2845.CrossRefGoogle Scholar
10.Campbell, J.H., Grens, J.Z., and Poco, J.F., “Preparation and Properties of Hollow Glass Microspheres for Use in Laser Fusion Experiments,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-53516 (1983).CrossRefGoogle Scholar
11.Solomon, D.E., editor, 1981 Inertial Fusion Research Annual Technical Report, KMS Fusion, Inc., Ann Arbor, MI, DOE/DP/40030-4, KMSF-U1198 (1981).Google Scholar
12.Letts, S.A., Myers, D.W., and Witt, L.A., “Ultrasmooth Plasma Polymerization Coatings for Laser Fusion Targets,” J. Vac. Sci. Technol., 19 (1981) p. 739.CrossRefGoogle Scholar
13.Campbell, J.H.Grens, J.Z., Poco, J.F., and Ives, B., “Preparation and Properties of Poly (Vinyl Alcohol) Microspheres,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-53750 (1986).CrossRefGoogle Scholar
14.Bushvev, V.S., Dorogotoutsev, V.M., Isakov, A.I., Kobets, N.S., Kozyreva, N.M., Korshak, V.V., Krupinina, L.A., Merkul'ev, Yu. A., and Nikitenko, A.I., “Polymer Laser Targets,” Trudy Ordena Lenina Fizicheskogo Institute im. R. V. Lebedava 12, (1980), p. 7283; translation UCRL-11924, Lawrence Livermore National Laboratory, Livermore, CA.Google Scholar
15.Kool, L.B., Nolen, R.L., and Sherwood, K.W.; J. Vac. Sci Technol., 18 (1981) p. 1233.CrossRefGoogle Scholar
16.Kim, K., Smoot, B.J., Woerner, R.L., and Hendricks, C.D., “A New Technique for Fabricating Cryogenic Laser Fusion Targets Using Cold-Gas Jets., Appl. Phys. Lett., 34 (1979) p. 282.CrossRefGoogle Scholar
17.Kim, K. and Rieger, H.Cryogenic Inertial Confinement Fusion Target Fabrication System Directly Operable Inside a Room Temperature Target Chamber,” Appl. Phys. Lett., 37 (1980) p. 425.CrossRefGoogle Scholar
18.Laser Program Annual Report 1984, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-84 (1985), p. 4-12 to 415.Google Scholar
19.Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-23 to 327.Google Scholar
20.Kim, K., Mok, L., Erienborn, M.J., and Bernat, T.P., Vac Sci. Technol., A3(3), (1985) p. 1196.CrossRefGoogle Scholar
21.Mok, L., Kim, K., Bernat, T.P. and Darling, D.H., J. Vac. Sci. Technol., A1(2), (1983) p. 897.CrossRefGoogle Scholar
22.Bernat, T., Darling, D.H., and Sanchez, J.J.Application of Holographic Interferometry to Cryogenic ICF Target Characterization,” J. Vac. Sci. Technol., 20 (1982) p. 1362.CrossRefGoogle Scholar
23.Darling, D.H. and Sacks, R.A., “Wetted Foam Capsules for Direct Drive ICF Reactor Application,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-93951 (1986).Google Scholar
24.Sacks, R.A. and Darling, D.H.Direct Drive Cryogenic Capsules Employing DT Wetted Foam,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-94381 (1986).Google Scholar
25.Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-2 to 322.Google Scholar
26.Kulsrud, R.M., Furth, H.P., Valeo, E.J., and Goldhaber, M., “Fusion Reactor Plasmas with Polarized Nuclei,” Phys. Rev. Lett., 49 (1982) p. 1248.CrossRefGoogle Scholar
27.Souers, P.C., Fearon, E.M., Mapoles, E.R., Gaines, J.R., and Sater, J.D.Nuclear Spin Polarization of Solid DT,” Lawrence Livermore Laboratory, Livermore, CA, Report UCRL-92700, Rev 1. (1985).Google Scholar
28.Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-27 to 331.Google Scholar