Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T04:49:37.719Z Has data issue: false hasContentIssue false

Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The remarkable progress in nonpolar and semipolar devices based on gallium nitride (GaN) in recent years has been driven by not only advancements in the epitaxial growth technique but also improvements in the quality of bulk nonpolar and semipolar GaN substrates. At present, high-quality nonpolar/semipolar substrates are only made by slicing thick bulk GaN crystals grown by hydride vapor-phase epitaxy (HVPE). Although HVPE is currently the most successful method for obtaining high-quality bulk GaN crystals, it is still difficult to obtain uniform crystals with large diameters and thicknesses. The size of the nonpolar/semipolar substrates has been limited by the growth thickness along the c-axis of bulk GaN crystals. Here we review the growth of bulk GaN crystals by HVPE to achieve high-quality and large-sized nonpolar and semipolar substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Oshima, Y., Yoshida, T., Eri, T., Shibata, M., Mishima, T., Phys. Status Solidi C 4, 2215 (2007).CrossRefGoogle Scholar
2Shibata, H., Waseda, Y., Ohta, H., Kiyomi, K., Shimoyma, K., Fujito, K., Nagaoka, H., Kagamitani, Y., Simura, R., Fukuda, T., Mater. Trans. 48, 2782 (2007).CrossRefGoogle Scholar
3Maruska, H.P., Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).CrossRefGoogle Scholar
4Motoki, K., Okahisa, T., Matsumoto, N., Matsushita, M., Kimura, H., Kasai, H., Takemoto, K., Uematsu, K., Hirano, T., Nakayama, M., Nakahata, S., Ueno, M., Hara, D., Kumagai, Y., Koukitsu, A., Seki, H., Jpn. J. Appl. Phys. 40, L140 (2001).CrossRefGoogle Scholar
5Fujito, K., Kubo, S., Nagaoka, H., Mochizuki, T., Namita, H., Nagao, S., J. Cryst. Growth (2009), doi: 10.1016/j.jcrysgro.2009. 01.046.Google Scholar
6Kumagai, Y., Koukitsu, A., Seki, H., Jpn. J. Appl. Phys. 39, L149 (2000).CrossRefGoogle Scholar
7Wakahara, A., Yamamoto, T., Ishio, K., Yoshida, A., Seki, Y., Kainosho, K., Oda, O., Jpn. J. Appl. Phys. 39, 2399 (2000).CrossRefGoogle Scholar
8Kryliouk, O., Reed, M., Dann, T., Anderson, T., Chai, B., Mater. Sci. Eng. B 66, 26 (1999).CrossRefGoogle Scholar
9Melnik, Yu., Nikolaev, A., Nikitina, I., Vassilevski, K., Dmitriev, V., Mater. Res. Soc. Symp. Proc. 482, 269 (1998).CrossRefGoogle Scholar
10Kim, S.T., Lee, Y.J., Chung, S.H., Moon, D.C., J. Korean Phys. Soc. 33, S313 (1998).Google Scholar
11Kelly, M.K., Ambacher, O., Dimitrov, R., Handschuh, R., Stutzmann, M., Phys. Status Solidi A 159, R3 (1997).3.0.CO;2-F>CrossRefGoogle Scholar
12Park, S.S., Park, I., Choh, S.H., Jpn. J. Appl. Phys. 39, L1141 (2000).CrossRefGoogle Scholar
13Oshima, Y., Eri, T., Shibata, M., Sunakawa, H., Kobayashi, K., Ichihashi, T., Usui, A., Jpn. J. Appl. Phys. 42, L1 (2003).CrossRefGoogle Scholar
14Williams, A.D., Moustakas, T.D., J. Cryst. Growth 300, 37 (2007).CrossRefGoogle Scholar
15Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G1.3 (1999).Google Scholar
16Inoue, T., Seki, Y., Oda, O., Kurai, S., Yamada, Y., Taguchi, T., Phys. Status Solidi B 223 15 (2001).3.0.CO;2-D>CrossRefGoogle Scholar
17Yamane, H., Shimada, M., Sekiguchi, T., DiSalvo, F.J., J. Cryst. Growth 186, 8 (1998).CrossRefGoogle Scholar
18Kawamura, F., Morishita, M., Omae, K., Yoshimura, M., Mori, Y., Sasaki, T., Jpn. J. Appl. Phys. 42, L879 (2003).CrossRefGoogle Scholar
19Dwiliń;ski, R., Doradziński, R., Garczynński, J., Sierzputowski, L., Baranowski, J.M., Kamińska, M., Diamond Relat. Mater. 7, 1348 (1998).CrossRefGoogle Scholar
20Hashimoto, T., Wu, F., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 46, L889 (2007).CrossRefGoogle Scholar
21Paskova, T., Kroeger, R., Figge, S., Hommel, D., Darakchieva, V., Monemar, B., Preble, E., Hanser, A., Williams, N.M., Tutor, M., Appl. Phys. Lett. 89, 051914 (2006).CrossRefGoogle Scholar
22Hanser, D., Liu, L., Preble, E.A., Udwary, K., Paskova, T., Evans, K.R., J. Cryst. Growth 310, 3953 (2008).CrossRefGoogle Scholar
23Weyers, M., Richter, E., Hennig, C., Hagedorn, S., Wernicke, T., Tränkle, G., Proc. of SPIE 6910, 69100I (2008).CrossRefGoogle Scholar
24Lucznik, B., Pastuszka, B., Grzegory, I., Boćkowski, M., Kamler, G., Litwin-Staszewska, E., Porowski, S., J. Cryst. Growth 281, 38 (2005).CrossRefGoogle Scholar
25Haskell, B.A., Wu, F., Matsuda, S., Craven, M.D., Fini, P.T., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 83, 1554 (2003).CrossRefGoogle Scholar
26Haskell, B.A., Chakaraborty, A., Wu, F., Sasano, H., Fini, P.T., Denbaars, S.P., Speck, J.S., Nakamura, S., J. Electron. Mater. 34, 357 (2005).CrossRefGoogle Scholar
27Haskell, B.A., Wu, F., Craven, M.D., Matsuda, S., Fini, P.T., Fujii, T., Fujito, K., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 83, 644 (2003).CrossRefGoogle Scholar
28Haskell, B.A., Baker, T.J., McLaurin, M.B., Wu, F., Fini, P.T., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 86, 111917 (2005).CrossRefGoogle Scholar
29Baker, T.J., Haskell, B.A., Wu, F., Fini, P.T., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 44, L920 (2005).CrossRefGoogle Scholar
30Fujito, K., Kiyomi, K., Mochizuki, T., Oota, H., Namita, H., Nagao, S., Fujimura, I., Phys. Status Solidi A 205, 1056 (2008).CrossRefGoogle Scholar
31Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y., Maeda, T., Phys. Status Solidi A 176, 535 (1999).3.0.CO;2-I>CrossRefGoogle Scholar