Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T15:08:44.335Z Has data issue: false hasContentIssue false

Developing high-capacity hydrogen storage materials via quantum simulations

Published online by Cambridge University Press:  22 March 2011

Seung-Hoon Jhi
Affiliation:
Pohang University of Science and Technology, Republic of Korea; [email protected]
Jisoon Ihm
Affiliation:
Seoul National University, Republic of Korea; [email protected]
Get access

Abstract

Hydrogen is considered by some to be a promising non-CO2-emitting energy carrier for the future. However, to realize a hydrogen economy, there are several technological barriers to overcome. Currently, safe and efficient storage of hydrogen is a bottleneck in the practical usage of hydrogen for fuels. In this article, we present a review on the first-principles computational approach in designing hydrogen storage materials with an emphasis on molecular hydrogen storage in nanostructured materials. Given the limitation of pristine nanostructures for room-temperature hydrogen storage, the strategy of decorating the backbone structure of the nanostructure with transition metal atoms in order to enhance the hydrogen adsorption energy is addressed, and the interplay between the Coulomb interactions and the so-called Kubas interaction (nondissociative weak chemisorption via electron donation and back-donation channels) has been studied. The influence of electron spin on the hydrogen binding energy, problems of metal clustering and oxidation, and the structural instability that may arise during hydrogen sorption are also discussed. We address the limitations and challenges in the development of high-capacity hydrogen storage materials and provide perspectives for how computational materials design can help cope with those problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schlapbach, L., Zuttel, A., Nature 414, 353 (2001).CrossRefGoogle Scholar
2.Satyapal, S., Petrovic, J., Read, C., Thomas, G., Ordaz, G., Catal. Today 120, 246 (2007).Google Scholar
3.Kubas, G.J., J. Organomet. Chem. 635, 37 (2001).Google Scholar
4.Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
5.Geerlings, P., De Proft, F., Langenaeker, W., Chem. Rev. 103, 1793 (2003).CrossRefGoogle Scholar
6.Adamo, C., Barone, V., J. Chem. Phys. 110, 6158 (1999).CrossRefGoogle Scholar
7.Dunning, T.H., J. Phys. Chem. A 104, 9062 (2000).CrossRefGoogle Scholar
8.Cha, J., Lim, S., Choi, C.H., Cha, M.H., Park, N., Phys. Rev. Lett. 103, 216102 (2009).CrossRefGoogle Scholar
9.Kim, Y.H., Sun, Y.Y., Choi, W.I., Kang, J., Zhang, S.B., Phys. Chem. Chem. Phys. 11, 11400 (2009).CrossRefGoogle Scholar
10.Head-Gordon, M., Pople, J.A., Frisch, M.J., Chem. Phys. Lett. 153, 503 (1988).Google Scholar
11.Čížek, J., J. Chem. Phys. 45, 4256 (1966).CrossRefGoogle Scholar
12.Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G., Rev. Mod. Phys. 73, 33 (2001).Google Scholar
13.Becke, A.D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
14.Bajdich, M., Reboredo, F.A., Kent, P.R.C., Phys. Rev. B 82, 081405 (2010).CrossRefGoogle Scholar
15.Schimka, L., Harl, J., Stroppa, A., Grüneis, A., Marsman, M., Mittendorfer, F., Kresse, G., Nat. Mater. 9, 741 (2010).Google Scholar
16.Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J., Science 287, 622 (2000).Google Scholar
17.Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., Science 312, 1034 (2006).Google Scholar
18.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J., Nature 386, 377 (1997).CrossRefGoogle Scholar
19.Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., Science 286, 1127 (1999).Google Scholar
20.Arellano, J.S., Molina, L.M., Rubio, A., Lopez, M.J., Alonso, J.A., J. Chem. Phys. 117, 2281 (2002).CrossRefGoogle Scholar
21.Gulseren, O., Yildirim, T., Ciraci, S., Phys. Rev. B 66, 121401 (2002).Google Scholar
22.Okamoto, Y., Miyamoto, Y., J. Phys. Chem. B 105, 3470 (2001).CrossRefGoogle Scholar
23.Yang, F.H., Yang, R.T., Carbon 40, 437 (2002).Google Scholar
24.Chen, J., Wu, F., Appl. Phys. A 78, 989 (2004).Google Scholar
25.Jhi, S.H., Kwon, Y.K., Phys. Rev. B 69, 245407 (2004).CrossRefGoogle Scholar
26.Yildirim, T., Ciraci, S., Phys. Rev. Lett. 94, 175501 (2005).CrossRefGoogle Scholar
27.Zhao, Y.F., Kim, Y.H., Dillon, A.C., Heben, M.J., Zhang, S.B., Phys. Rev. Lett. 94, 155504 (2005).Google Scholar
28.Lee, H., Choi, W.I., Ihm, J., Phys. Rev. Lett. 97, 056104 (2006).Google Scholar
29.Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi, Y.M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P., Appl. Phys. A 72, 129 (2001).CrossRefGoogle Scholar
30.Costa, P., Coleman, K.S., Green, M.L.H., Nanotechnology 16, 512 (2005).CrossRefGoogle Scholar
31.Lueking, A., Yang, R.T., AlChE J. 49, 1556 (2003).Google Scholar
32.Stojkovic, D., Zhang, P., Lammert, P.E., Crespi, V.H., Phys. Rev. B 68, 195406 (2003).CrossRefGoogle Scholar
33.Lin, Y., Ding, F., Yakobson, B.I., Phys. Rev. B 78, 041402 (2008).Google Scholar
34.Sofo, J.O., Chaudhari, A.S., Barber, G.D., Phys. Rev. B 75, 153401 (2007).Google Scholar
35.Li, Y.W., Yang, R.T., J. Am. Chem. Soc. 128, 726 (2006).Google Scholar
36.Lee, H., Choi, W.I., Nguyen, M.C., Cha, M.H., Moon, E., Ihm, J., Phys. Rev. B 76, 195110 (2007).CrossRefGoogle Scholar
37.Niu, J., Rao, B.K., Jena, P., Phys. Rev. Lett. 68, 2277 (1992).Google Scholar
38.Lochan, R.C., Head-Gordon, M., Phys. Chem. Chem. Phys. 8, 1357 (2006).Google Scholar
39.Nguyen, M.C., Lee, H., Ihm, J., Solid State Commun. 147, 419 (2008).CrossRefGoogle Scholar
40.Park, N., Hong, S., Kim, G., Jhi, S.H., J. Am. Chem. Soc. 129, 8999 (2007).CrossRefGoogle Scholar
41.Sun, Y.Y., Kim, Y.H., Zhang, S.B., J. Am. Chem. Soc. 129, 12606 (2007).CrossRefGoogle Scholar
42.Hamaed, A., Trudeau, M., Antonelli, D.M., J. Am. Chem. Soc. 130, 6992 (2008).Google Scholar
43.Phillips, A.B., Shivaram, B.S., Phys. Rev. Lett. 100, 105505 (2008).CrossRefGoogle Scholar
44.Sun, Q., Jena, P., Wang, Q., Marquez, M., J. Am. Chem. Soc. 128, 9741 (2006).CrossRefGoogle Scholar
45.Kim, T.S., Kim, K.J., Jo, S.K., Lee, J., J. Phys. Chem. B 112, 16431 (2008).Google Scholar
46.Kim, G., Jhi, S.H., Park, N., Louie, S.G., Cohen, M.L., Phys. Rev. B 78, 085408 (2008).Google Scholar
47.Zhao, Y.F., Lusk, M.T., Dillon, A.C., Heben, M.J., Zhang, S.B., Nano Lett. 8, 157 (2008).CrossRefGoogle Scholar
48.Cha, M.-H., Nguyen, M.C., Lee, Y.L., Ihm, J., J. Phys. Chem. C 114, 14276 (2010).Google Scholar
49.Chandrakumar, K.R.S., Ghosh, S.K., Nano Lett. 8, 13 (2008).Google Scholar
50.Yoon, M., Yang, S.Y., Hicke, C., Wang, E., Geohegan, D., Zhang, Z.Y., Phys. Rev. Lett. 100, 206806 (2008).CrossRefGoogle Scholar
51.Kim, G., Jhi, S.H., Lim, S., Park, N., Phys. Rev. B 79, 155437 (2009).Google Scholar
52.Liu, W., Zhao, Y.H., Li, Y., Jiang, Q., Lavernia, E.J., J. Phys. Chem. C 113, 2028 (2009).CrossRefGoogle Scholar
53.Lee, H., Ihm, J., Cohen, M.L., Louie, S.G., Nano Lett. 10, 793 (2010).Google Scholar
54.Mulfort, K.L., Farha, O.K., Stern, C.L., Sarjeant, A.A., Hupp, J.T., J. Am. Chem. Soc. 131, 3866 (2009).Google Scholar
55.Blomqvist, A., Araujo, C.M., Srepusharawoot, P., Ahuja, R., Proc. Nat. Acad. Sci. U.S.A. 104, 20173 (2007).Google Scholar
56.Dinca, M., Long, J.R., Angew. Chem. Int. Ed. 47, 6766 (2008).Google Scholar
57.Wang, Q., Sun, Q., Jena, P., Kawazoe, Y., J. Chem. Theory Comput. 5, 374 (2009).Google Scholar
58.Bhattacharya, A., Bhattacharya, S., Majumder, C., Das, G.P., J. Phys. Chem. C 114, 10297 (2010).Google Scholar
59.Chu, S.B., Hu, X.R., Du, C.L., Wu, X.B., Dai, Y.C., Hu, L.B., Deng, J.B., Feng, Y.P., Int. J. Hydrogen Energy 35, 1280 (2010).CrossRefGoogle Scholar
60.Deng, W.Q., Xu, X., Goddard, W.A., Phys. Rev. Lett. 92, 166103 (2004).Google Scholar
61.Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E., Nano Lett. 8, 3166 (2008).Google Scholar
62.Ferey, G., Chem. Soc. Rev. 37, 191 (2008).CrossRefGoogle Scholar
63.Gupta, V., Scharff, P., Risch, K., Romanus, H., Muller, R., Solid State Commun. 131, 153 (2004).CrossRefGoogle Scholar
64.Saito, S., Oshiyama, A., Phys. Rev. B 49, 17413 (1994).Google Scholar
65.van den Berg, A.W.C., Arean, C.O., Chem. Commun. 668 (2008).Google Scholar
66.Lim, K.L., Kazemian, H., Yaakob, Z., Daud, W.R.W., Chem. Eng. Technol. 33, 213 (2010).Google Scholar
67.Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M., Science 300, 1127 (2003).Google Scholar
68.Cheon, Y.E., Suh, M.P., Angew. Chem. Int. Ed. 48, 2899 (2009).Google Scholar
69.Han, S.S., Mendoza-Cortes, J.L., Goddard, W.A., Chem. Soc. Rev. 38, 1460 (2009).Google Scholar
70.Kresse, G., Furthmuller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar