Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T14:32:39.380Z Has data issue: false hasContentIssue false

Designer matter: Fascinating interactions of light and sound with metamaterials

Published online by Cambridge University Press:  08 September 2017

Andrea Alù*
Affiliation:
The University of Texas at Austin, USA; [email protected]
Get access

Abstract

Metamaterials are artificial materials with emerging physical properties that go well beyond those of their individual constituents, providing interesting opportunities to tailor interactions between waves and matter. This article provides an overview of recent research activity in electromagnetics, nano-optics, acoustics and mechanics, showing how suitably tailored meta-elements and their arrangements open exciting venues to manipulate and control waves in unprecedented ways. Theoretical and experimental efforts to realize metamaterials for scattering suppression, nanostructures and metasurfaces to control wave propagation and radiation, large nonreciprocity in bulk materials without magnetism, giant nonlinear responses in properly tailored metasurfaces, and metasurfaces with balanced loss and gain are discussed. Physical insights into the exotic phenomena behind the metamaterial responses, new devices based on these concepts, and their impact on technology are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhao, Y., Belkin, M.A., Alù, A., Nat. Commun. 3, 870 (2012).CrossRefGoogle Scholar
Zhao, Y., Alù, A., Nano Lett. 13, 1086 (2013).CrossRefGoogle Scholar
Lee, J., Nookala, N., Gomez-Diaz, S., Tymchenko, M., Demmerle, F., Boehm, G., Amann, M.-C., Alù, A., Belkin, A., Adv. Opt. Mater. 4, 664 (2016).CrossRefGoogle Scholar
Maier, S.A., Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).CrossRefGoogle Scholar
Engheta, N., Ziolkowski, R.W., Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006).CrossRefGoogle Scholar
Pendry, J., Phys. Rev. Lett. 85, 3966 (2000).CrossRefGoogle Scholar
Alù, A., Engheta, N., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016623 (2005).CrossRefGoogle Scholar
Pendry, J., Schurig, D., Smith, D., Science 312, 1780 (2006).CrossRefGoogle Scholar
Rosencher, E., Fiore, A., Vinter, B., Berger, V., Bois, Ph., Nagle, J., Science 271, 168 (1996).CrossRefGoogle Scholar
Khurgin, J., J. Opt. Soc. Am. B 6, 1673 (1989).CrossRefGoogle Scholar
Lee, J., Tymchenko, M., Argyropoulos, C., Chen, P.Y., Lu, F., Demmerle, F., Boehm, G., Amann, M.C., Alù, A., Belkin, M.A., Nature 511, 65 (2014).CrossRefGoogle Scholar
Lee, J., Jung, S., Chen, P.Y., Lu, F., Demmerle, F., Boehm, G., Amann, M.C., Alù, A., Belkin, M.A., Adv. Opt. Mater. 2, 1057 (2014).CrossRefGoogle Scholar
Gomez-Diaz, J.S., Tymchenko, M., Lee, J., Belkin, M.A., Alù, A., Phys. Rev. B Condens. Matter 92, 125429 (2015).CrossRefGoogle Scholar
Tymchenko, M., Gomez-Diaz, J.S., Lee, J., Nookala, N., Belkin, M.A., Alù, A., Phys. Rev. Lett. 115, 207403 (2015).CrossRefGoogle Scholar
Nookala, N., Lee, J., Tymchenko, M., Gomez-Diaz, J.S., Demmerle, F., Boehm, G., Optica 3, 283 (2016).CrossRefGoogle Scholar
Tymchenko, M., Gomez-Diaz, J.S., Lee, J., Nookala, N., Belkin, M.A., Alù, A., Phys. Rev. B Condens. Matter 94, 214303 (2016).CrossRefGoogle Scholar
Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A., Science 343, 516 (2014).CrossRefGoogle Scholar
Khanikaev, A.B., Fleury, R., Mousavi, H., Alù, A., Nat. Commun. 6, 8260 (2015).CrossRefGoogle Scholar
Haldane, F., Raghu, S., Phys. Rev. Lett. 100, 013904 (2008).CrossRefGoogle Scholar
Fang, K., Luo, J., Metelmann, A., Matheny, M.H., Marquardt, F., Clerk, A.A., Painter, O., Nat. Phys. 13, 465 (2017).CrossRefGoogle Scholar
Ruesink, F., Miri, M.A., Alù, A., Verhagen, E., Nat. Commun. 7, 13662 (2016).CrossRefGoogle Scholar
Sounas, D., Alù, A., ACS Photonics 1, 198 (2014).CrossRefGoogle Scholar
Estep, N., Sounas, D., Soric, J., Alù, A., Nat. Phys. 10, 923 (2014).CrossRefGoogle Scholar
Fleury, R., Khanikaev, A., Alù, A., Nat. Commun. 7, 11744 (2016).CrossRefGoogle Scholar
Hadad, Y., Soric, J.C., Alù, A., Proc. Natl. Acad. Sci. U.S.A. 113, 33471 (2016).CrossRefGoogle Scholar
Hadad, Y., Khanikaev, A.B., Alù, A., Phys. Rev. B Condens. Matter 93, 155112 (2016).CrossRefGoogle Scholar
Coulais, C., Sounas, D.L., Alù, A., Nature 542, 461 (2017).CrossRefGoogle Scholar
Alù, A., Engheta, N., Phys. Rev. Lett. 102, 233901 (2009).CrossRefGoogle Scholar
Alù, A., Engheta, N., Phys. Rev. Lett. 105, 263906 (2010).CrossRefGoogle Scholar
Monticone, F., Alù, A., Phys. Rev. X 3, 041005 (2013).Google Scholar
Monticone, F., Alù, A., Optica 3, 718 (2016).CrossRefGoogle Scholar
Sounas, D.L., Fleury, R., Alù, A., Phys. Rev. Appl. 4, 014005 (2015).CrossRefGoogle Scholar
Fleury, R., Sounas, D.L., Alù, A., Nat. Commun. 6, 5905 (2015).CrossRefGoogle Scholar
Fleury, R., Sounas, D., Alù, A., Phys. Rev. Lett. 113, 023903 (2014).CrossRefGoogle Scholar
Monticone, F., Valagiannopoulos, C.A., Alù, A., Phys. Rev. X 6, 041018 (2016).Google Scholar