Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-20T18:06:46.921Z Has data issue: false hasContentIssue false

Design Parameters for Superhydrophobicity and Superoleophobicity

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent experiments have revealed that the wax on the lotus leaf surface, by itself, is weakly hydrophilic, even though the lotus leaf is known to be superhydrophobic. Conventional understanding suggests that a surface of such waxy composition should not be able to support superhydrophobicity and high contact angles between a liquid and the surface. Here, we show that the unexpected superhydrophobicity is related to the presence of “reentrant texture” (that is, a multivalued surface topography) on the surface of the lotus leaf. We exploit this understanding to enable the development of superoleophobic surfaces (i.e., surfaces that repel extremely low-surface-tension liquids, such as various alkanes), where essentially no naturally oleophobic materials exist. We also develop general design parameters that enable the evaluation of the robustness of the composite interface on a particular surface. Based on these design parameters, we also rank various superhydrophobic and superoleophobic substrates discussed in the literature, with particular emphasis on surfaces developed from inherently hydrophilic or oleophilic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.Yu, Y., Zhao, Z.H., Zheng, Q.S., Langmuir 23 (15), 8212 (2007).CrossRefGoogle Scholar
2.Callies, M., Quéré, D., Soft Mater. 1 (1), 55 (2005).Google Scholar
3.Cao, L., Hu, H.H., Gao, D., Langmuir 23 (8), 4310 (2007).CrossRefGoogle Scholar
4.Otten, A., Herminghaus, S., Langmuir 20 (6), 2405 (2004).Google Scholar
5.Chen, W., Fadeev, A.Y., Hsieh, M.C., Oner, D., Youngblood, J., McCarthy, T.J., Langmuir 15 (10), 3395 (1999).Google Scholar
6.Tuteja, A., Choi, W., Ma, M.L., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H., Cohen, R.E., Science 318 (5856), 1618 (2007).CrossRefGoogle Scholar
7.Zisman, W.A., Relation of the equilibrium contact angle to liquid and solid construction. In Contact Angle, Wettability and Adhesion, ACS Advances in Chemistry Series (American Chemical Society: Washington, DC, 1964), vol. 43, pp. 151.Google Scholar
8.Tsujii, K., Yamamoto, T., Onda, T., Shibuichi, S., Angew. Chem., Int. Ed. Engl. 36 (9), 1011 (1997).CrossRefGoogle Scholar
9.Shibuichi, S., Yamamoto, T., Onda, T., Tsujii, K., J. Colloid Interface Sci. 208 (1), 287 (1998).CrossRefGoogle Scholar
10.Ahuja, A., Taylor, J.A., Lifton, V., Sidorenko, A.A., Salamon, T.R., Lobaton, E.J., Kolodner, P., Krupenkin, T.N., Langmuir 24 (1), 9 (2008).CrossRefGoogle Scholar
11.Coulson, S.R., Woodward, I.S., Badyal, J.P.S., Brewer, S.A., Willis, C., Chem. Mater. 12 (7), 2031 (2000).Google Scholar
12.Herminghaus, S., Europhys. Lett. 52 (2), 165 (2000).CrossRefGoogle Scholar
13.Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Pyatt, B.F., Appl. Phys. Lett. 89 (10), 104106 (2006).CrossRefGoogle Scholar
14.Zhai, L., Cebeci, F.C., Cohen, R.E., Rubner, M.F., Nano Lett. 4 (7), 1349 (2004).CrossRefGoogle Scholar
15. The submerged superhydrophobic surface acts like a mirror because of the total internal reflection of light caused by the entrainment of the thin layer of air between the superhy-drophobic surface and water.Google Scholar
16.Zhai, L., Berg, M.C., Cebeci, F.C., Kim, Y., Milwid, J.M., Rubner, M.F., Cohen, R.E., Nano Lett. 6 (6), 1213 (2006).Google Scholar
17.Cebeci, F.C., Wu, Z., Zhai, L., Cohen, R.E., Rubner, M.F., Langmuir 22 (6), 2856 (2006).CrossRefGoogle Scholar
18.Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936).Google Scholar
19.Cassie, A.B.D., Baxter, S., Trans. Faraday Soc. 40, 546 (1944).Google Scholar
20.Marmur, A., Langmuir 19 (20), 8343 (2003).CrossRefGoogle Scholar
21.Nosonovsky, M., Langmuir 23 (6), 3157 (2007).CrossRefGoogle Scholar
22.Johnson, R.E., Dettre, R.H., Contact angle hysteresis. In Contact Angle, Wettability and Adhesion, ACS Advances in Chemistry Series (American Chemical Society: Washington, DC, 1964), vol. 43, pp. 112135.Google Scholar
23.Patankar, N.A., Langmuir 19 (4), 1249 (2003).Google Scholar
24.Lafuma, A., Quéré, D., Nat. Mater. 2 (7), 457 (2003).Google Scholar
25.He, B., Patankar, N.A., Lee, J., Langmuir 19 (12), 4999 (2003).CrossRefGoogle Scholar
26.Barbieri, L., Wagner, E., Hoffmann, P., Langmuir 23 (4), 1723 (2007).CrossRefGoogle Scholar
27.Bico, J., Thiele, U., Quéré, D., Colloid Surf. A 206, 41 (2002).Google Scholar
28.Cheng, Y.-T., Rodak, D.E., Appl. Phys. Lett. 86 (14), 144101 (2005).CrossRefGoogle Scholar
29.Liu, J.-L., Feng, X.-Q., Wang, G., Yu, S.-W., J. Phys.: Condens. Matter 19 (35), 356002 (2007).Google Scholar
30.Extrand, C.W., Langmuir 18 (21), 7991 (2002).CrossRefGoogle Scholar
31.Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S., J. Appl. Phys. 87 (9), 4531 (2000).CrossRefGoogle Scholar
32.Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C., Langmuir 21 (12), 5549 (2005).CrossRefGoogle Scholar
33.Ma, M., Gupta, M., Li, Z., Zhai, L., Gleason, K.K., Cohen, R.E., Rubner, M.F., Rutledge, G.C., Adv. Mater. 19 (2), 255 (2007).Google Scholar
34.Krupenkin, T.N., Taylor, J.A., Wang, E.N., Kolodner, P., Hodes, M., Salamon, T.R., Langmuir 23 (18), 9128 (2007).Google Scholar