Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-20T17:39:16.808Z Has data issue: false hasContentIssue false

Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Due to the importance of ferroelectric and high-permittivity perovskite thin films for a wide range of applications, there has been extensive research devoted to understanding the mechanisms responsible for the degradation observed with time, temperature, and/or external field stress. The three most important degradation phenomena for ferroelectric materials such as Pb(Zr, Ti)O3 (PZT) and BaTiO3 are ferroelectric fatigue, ferro-electric aging, and resistance degradation. Ferroelectric fatigue is the loss of switchable polarization by repeated polarization reversals. Ferroelectric aging is characterized by a spontaneous change with time in the polarization-voltage (P-V) response. Resistance degradation is a deterioration of the insulating properties of a dielectric under direct-current (dc) bias and elevated temperature.

These degradation processes ultimately limit the lifetime and reliability of devices that use ferroelectric and high-permittivity perovskite dielectrics. Fatigue and aging lead to reliability concerns for electronic (nonvolatile memories), piezo-electric, electro-optic, and pyroelectric applications. Likewise resistance degradation typically limits the lifetime of ceramic capacitors and high-dielectric constant thin films such as (Ba, Sr)TiO3, which is the principal candidate material for very high-density dynamic random-access memories (DRAMs).

Because of the importance of these degradation processes, it is critical to understand them and to develop methods of eliminating or mitigating their effects. By combining results from studies on thin films with ones on ceramics and single crystals, a consistent picture of the mechanisms involved in these degradation processes is emerging. In this article, we discuss these degradation mechanisms with particular emphasis on the interaction between ferroelectric domains and charge trapping and the role of oxygen vacancies and associated defect dipoles.

Type
Electroceramic Thin Films Part II: Device Applications
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Waser, R., Baiatu, T., and Hardtl, K-H., J. Am. Ceram. Soc. 73 (1990) p. 1645.CrossRefGoogle Scholar
2.Robels, U., Schneider-Stormann, L., and Arlt, G., Ferroelectrics 168 (1995) p. 301.CrossRefGoogle Scholar
3.Smyth, D.M., Ferroelectrics 116 (1991) p. 117.CrossRefGoogle Scholar
4.Chen, X., Kingon, A.I., Al-Shareef, H.N., Bellur, K.R., Gifford, K., and Auciello, O., Integrated Ferroelectrics 7 (1995) p. 291.CrossRefGoogle Scholar
5.Minford, W.J., IEEE CHMT-5 297 (1982).Google Scholar
6.Lambeck, P.V. and Jonker, G.H., Ferroelectrics 22 (1978) p. 729.CrossRefGoogle Scholar
7.Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., and Evans, J.T. Jr., Appl. Phys. Lett. 66 (1995) p. 484.CrossRefGoogle Scholar
8.Warren, W.L., Tuttle, B.A., and Dimos, D., Appl. Phys. Lett. 67 (1995) p. 1496.Google Scholar
9.Yoo, I.K., Desu, S.B., and Xing, J., in Ferroelectric Thin Films III, edited by Tuttle, B.A., Myers, E.R., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, 1993) p. 165.Google Scholar
10.Pan, W.Y., Yue, C.F., and Tuttle, B.A., Ceram. Trans. 25 (1992) p. 385.Google Scholar
11.Mihara, T., Watanabe, H., and de Araujo, C.A. Paz, Jpn. J. Appl. Phys. 33 (1994) p. 5281.CrossRefGoogle Scholar
12.Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Schwartz, R.W., Clews, P.J., and McIntrye, D.C., J. Appl. Phys. 77 (1995) p. 6695.CrossRefGoogle Scholar
13.Scott, J.F. and de Arajuo, C.A. Paz, Science 246 (1989) p. 1400.CrossRefGoogle Scholar
14.Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., and Schwartz, R.W., J. Appl. Phys. 76 (1994) p. 4305.CrossRefGoogle Scholar
15.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63 (1993) p. 3592.CrossRefGoogle Scholar
16.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Appl. Phys. Lett. 65 (1994) p. 1522.CrossRefGoogle Scholar
17.Al-Shareef, H.N., Kingon, A.I., Chen, X., and Auciello, O., J. Mater. Res. 9 (1994) p. 2960.CrossRefGoogle Scholar
18.de Araujo, C.A. Paz, Cuchiaro, J.K., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374 (1995) p. 627.CrossRefGoogle Scholar
19.Al-Shareef, H.N., Dimos, D., Boyle, T.J., Warren, W.L., and Tuttle, B.A., Appl. Phys. Lett. 68 (1996) p. 690.CrossRefGoogle Scholar
20.Dimos, D., Al-Shareef, H.N., Warren, W.L., and Tuttle, B.A., J. Appl. Phys. 80 (1996) in press.CrossRefGoogle Scholar
21.Scott, J.F., de Araujo, C.A. Paz, Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70 (1991) p. 382.CrossRefGoogle Scholar
22.Al-Shareef, H.N., Tuttle, B.A., Warren, W.L., Headley, T.J., Dimos, D., Voigt, J.A., and Nasby, R.D., J. Appl. Phys. 79 (1996) p. 1013.CrossRefGoogle Scholar
23.Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Ramesh, R., and Evans, J.T. Jr., Appl. Phys. Lett. 67 (1995) p. 866.CrossRefGoogle Scholar
24.Lee, J., Ramesh, R., Keramidas, V.G., Warren, W.L., Pike, G.E., and Evans, J.T. Jr., Appl. Phys. Lett. 66 (1995) p. 1337.CrossRefGoogle Scholar
25.Warren, W.L., Dimos, D., Pike, G.E., Vanheusden, K., and Ramesh, R., Appl. Phys. Lett. 67 (1995) p. 1689.CrossRefGoogle Scholar
26.Dimos, D. and Warren, W.L. (unpublished manuscript).Google Scholar
27.Warren, W.L., Tuttle, B.A., Dimos, D., Pike, G.E., Al-Shareef, H.N., Ramesh, R., and Evans, J.T. Jr., Jpn. J. Appl. Phys. 35 (1996).CrossRefGoogle Scholar
28.Takahashi, S., Ferroelectrics 41 (1982) p. 143.CrossRefGoogle Scholar
29.Waser, R., Ferroelectric Ceramics, edited by Setter, N. and Colla, E.L. (Birkhauser œ Verlag, 1993).Google Scholar