Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T19:49:33.917Z Has data issue: false hasContentIssue false

Defect Engineering

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The pervasive role of defects in determining the thermal, mechanical, electrical, optical, and magnetic properties of materials is biblical. Thermodynamic control of imperfection under equilibrium conditions dictates, for instance, the high temperatures needed to raise defect content for diffusion processes. Nonequilibrium treatments, such as work hardening, are used to control dislocation and grain boundary density and morphology to enhance mechanical properties. Both approaches represent the practice of defect engineering. Both are examples of a synergistic interaction between science and engineering in which an existing knowledge base is applied to its limits, stirring the development of new knowledge and new applications.

The purpose of this article is to convey the flavor of the defect engineering culture. The invention of the transistor can be traced to a triumph of defect engineering. Original explorations of semiconductor materials had the goal of controlling surface rectification properties to devise rectifiers, oscillators, and amplifier substitutes for vacuum tube counterparts. Schottky barriers, p-n junctions and metal-oxide-semiconductor capacitors—the products of the endeavor—are now the building blocks of today's microcircuits. The commercial success of these applications has fueled a boom in materials physics research during the last two decades. The work-hardening knowledge base can be traced from the Japanese swordmaking ritual to the discovery of dislocations (in theory first, and then by direct observation). Expansion of the dislocation knowledge base was a dominating concern in materials science prior to the transistor. As shown in this article, these two disparate areas are essential components of the defect engineer's tool kit.

Type
Point Defects Part II
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shockley, W. and Goetzberger, A., J. Appl. Phys. 31 (1960) p. 1821.Google Scholar
2.DeKock, A.J.R., Philips Res. Rep. Suppl. 1 (1973); J. Appl. Phys. 44 (1973) p. 2816.Google Scholar
3.Benson, K.E., Lin, W., and Martin, E.P., in Semiconductor Silicon 1981, edited by Huff, H.R., Kriegler, R.J., and Takeishi, Y. (Electrochemical Society, Pennington, New Jersey, 1981) p. 33.Google Scholar
4.Patel, J.R., in Semiconductor Silicon 1977, edited by Huff, H.R. and Sirtl, E., (Electrochemical Society, Pennington, New Jersey, 1977) p. 189.Google Scholar
5.Maher, D.M., Staudinger, A.M. and Patel, J.R., J. Appl. Phys. 47 (1976) p. 3813.CrossRefGoogle Scholar
6.Hu, S.M., J. Appl. Phys. 45 (1974) p. 1567.CrossRefGoogle Scholar
7.Varker, C.J. and Ravi, K.V., J. Appl. Phys. 45 (1974) p. 272.CrossRefGoogle Scholar
8.Tan, T.Y., Gardiner, E.E., and Tice, W.K., Appl. Phys. Lett. 30 (1977) p. 175.CrossRefGoogle Scholar
9.Craven, R.A., in Impurity Diffusion and Gettering in Silicon, edited by Fair, R.B., Pearce, C.W., and Washburn, J. (Mater. Res. Soc. Symp. Proc. 36, Pittsburgh, PA, 1985) p. 159.Google Scholar
10.Martin, G.M., Mitonneau, A., and Mircea, A., Electron. Lett. 13 (1977) p. 191.CrossRefGoogle Scholar
11.Holmes, D.E., Chen, R.T., Elliott, K.R., and Kirkpatrick, C.G., Appl. Phys. Lett. 40 (1982) p. 46.CrossRefGoogle Scholar
12.Ta, L.B., Hobgood, H.M., Rohatgi, A., and Thomas, R.N., J. Appl. Phys. 53 (1982), p. 5771.CrossRefGoogle Scholar
13.Parsey, J.M. Jr., Nanishi, Y., Lagowski, J., and Gatos, H.C., J. Electrochem. Soc. 128 (1981) p. 936; 129 (1985) p. 388.CrossRefGoogle Scholar
14.Lagowski, J. and Gatos, H.C., J. Electron. Mater. 14a (1985) p. 73.Google Scholar
15.Kimerling, L.C., Rev. Solid State Science 4 (1990) p. 335.Google Scholar
16.People, R. and Bean, J.C., Appl. Phys Lett. 47 (1985) p. 322.CrossRefGoogle Scholar
17.Matthews, J.W., Blakeslee, A.E., and Mader, S., Thin Solid Films 33 (1976) p. 253.CrossRefGoogle Scholar
18.Gilmer, G.H. and Grabow, M.H., J. Metals 39 (1987) p. 19.Google Scholar
19.Fitzgerald, E.A., Watson, G.P., Proano, R.E., Act, D.G., Kirchner, P.D., Pettit, G.D., and Woodall, J.M., J. Appl. Phys. 65 (1989) p. 2220.CrossRefGoogle Scholar
20.Mii, Y.J., Xie, Y.H., and Fitzgerald, E.A., Appl. Phys. Lett. 59 (1991); E.A. Fitzgerald, Materials Science Reports (1991), to be published.CrossRefGoogle Scholar
21.Fahey, D., Griffin, R.B., and Plummer, J.D., Rev. Mod. Phys. 61 (1989) p. 289.CrossRefGoogle Scholar
22.Osburn, C.M., J. Electron. Mater. 19 (1990) p. 67.CrossRefGoogle Scholar
23.Benton, J.L., Michel, J., Kimerling, L.C., Weir, B.E., and Gottscho, R.A., J. Electron. Mater. 20 (1991) p. 643.CrossRefGoogle Scholar
24.Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J., and Caifer, C.E., Mater. Science Forum 38 (1989) p. 141.Google Scholar
25.Beyers, R.,J. Appl. Phys. 56 (1984) p. 147.CrossRefGoogle Scholar
26.Beyers, R., Kim, K.B., and Sinclair, R., J. Appl. Phys. 61 (1987) p. 2195.CrossRefGoogle Scholar
27.Ballamy, W.C. and Kimerling, L.C., IEEE Trans. Electron Devices ED-25 (1978) p. 746.CrossRefGoogle Scholar
28.Rozgonyi, G.A. and Kola, R.R., in Defect Control in Semiconductors, edited by Sumino, K. (North Holland, New York, 1990) p. 579.Google Scholar
29.Street, R.A., Rev. Solid State Science 4 (1990) p. 619.Google Scholar
30.Seager, C.H. and Ginley, D.S., Appl. Phys Lett. 34 (1979) p. 337.CrossRefGoogle Scholar
31.Newman, R.C., Brown, A.R., Murray, R., Tipping, A., and Tucker, J.H., in Semiconductor Silicon 1990, edited by Huff, H.R., Barndough, K.G., and Chikawa, J. (Electrochemical Society, Pennington, New Jersey, 1990) p. 734.Google Scholar
32.d'Heurle, F.M., Met. Trans. 2 (1971) p. 683.CrossRefGoogle Scholar
33.Vaidya, S., Sheng, T.T., and Sinha, A.K., Appl. Phys. Lett. 36 (1980) p. 464.CrossRefGoogle Scholar
34.Cho, J. and Thompson, C.V., Appl. Phys Lett. 54 (1989) p. 2577.CrossRefGoogle Scholar
35.Henry, C.H., Blonder, G.E., and Kazarinov, R.F., IEEE J. Lightwave Techn. 1 (1989) p. 1530.CrossRefGoogle Scholar
36.Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70 (1991).CrossRefGoogle Scholar