Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T14:02:54.748Z Has data issue: false hasContentIssue false

Crystal Interface Engineering in High Tc Oxides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Interfaces between metal oxides have not been studied as extensively as metal or semiconductor interfaces. Even in magnetic metallic systems, new phenomena are still being discovered, such as giant magnetoresistance, which has been attributed to an interface phenomenon. As general interest in metal oxides increases, researchers are studying a large variety of heterostructures consisting of superconducting oxides, conducting oxides, ferroelectric oxides, magnetic oxides, and optical oxides. As the complexity and level of integration increase, scientists need a better understanding of the interfaces in metal oxide systems. For example, interface issues in grain boundaries in high Tc oxides and in Josephson junctions of the superconductor/normal material/superconductor (SNS) type have been identified as important technological barriers. In heterostructures based on ferroelectric materials, fatigue problems are believed to be associated with the interface between the conducting electrodes and the ferroelectric metal oxides, and with grain boundaries in the ferroelectric materials.

In this article we will focus on the interface issues related to YBCO superconductors. We will describe interface phenomena observed in several systems, such as YBCO/metal contacts, YBCO/YBCO grain boundaries, and YBCO/epitaxial metal oxides. From their seemingly universal behavior, we will try to identify the origin of the interface phenomena and will describe some recent efforts to control such phenomena.

Type
Crystal Engineering of High Tc-Related Oxide Films
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sanders, S.C., Russek, S.E., Clickner, C.C., and Ekin, J.W., preprint.Google Scholar
2.Sun, A.G., Gajewski, D.A., Maple, M.B., and Dynes, R.C., to appear in Phys. Rev. Lett.Google Scholar
3.Ditnos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61 (1988) p. 219.Google Scholar
4.Garrison, S.M., Newman, N., Cole, B.E, Char, K., and Barton, R.W., Appl. Phys. Lett. 58 (1991) p. 2168.CrossRefGoogle Scholar
5.Char, K., Colclough, M.S., Garrison, S.M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59 (1991) p. 733.CrossRefGoogle Scholar
6.Daly, K.P., Dozier, W.D., Burch, J.F., Coons, S.B., Hu, R., Platt, C.E., and Simon, R.W., Appl. Phys. Lett. 58 (1991) p. 543.CrossRefGoogle Scholar
7.Moeckly, B.H., Lathrop, D.K., and Buhrman, R.A., Phys. Rev. B 47 (1993) p. 400; B.H. Moeckly, R.A. Buhrman, and P.E. Sulewski, Appl. Phys. Lett. 64 (1994) p. 1427.CrossRefGoogle Scholar
8.Lathrop, D.K., Moeckly, B.H., Russek, S.E., and Buhrman, R.A., Appl. Phys. Lett. 58 (1991) p. 1095.CrossRefGoogle Scholar
9.Early, E.A., Clark, A.F., and Char, K., Appl. Phys. Lett. 62 (1993) p. 3357.CrossRefGoogle Scholar
10.Miklich, A.H., Clarke, J., Char, K., and Colclough, M.S., Appl. Phys. Lett. 59 (1992) p. 1899.CrossRefGoogle Scholar
11.Hammond, S.G., He, Y., Muirhead, C.M., Wu, P., Colclough, M.S., and Char, K., IEEE Trans. Magn. 31 (1993) p. 1695.Google Scholar
12.Char, K., Colclough, M.S., Lee, L.P., and Zaharchuk, G., Appl. Phys. Lett. 59 (1991) p. 2177.CrossRefGoogle Scholar
13.Dilorio, M.S., Yoshizumi, S., Yang, K-Y., Zhang, J., and Maung, M., Appl. Phys. Lett. 58 (1991) p. 2552; R.H. Ono, J.A. Beall, M.W. Cromar, T.E. Harvey, M.E. Johansson, C.D. Reinstsema, and D.A. Rudman, Appl. Phys. Lett. 59 (1991) p. 1126.Google Scholar
14.Rosenthal, P.A., Grossman, E.N., Ono, R.H., and Vale, L.R., Appl. Phys. Lett. 63 (1993) p. 1984.CrossRefGoogle Scholar
15.Rogers, C.T., Hedge, M.S., Dutta, B., Wu, X.D., and Venkatesan, T., Appl. Phys. Lett. 55 (1989) p. 2032; J.B. Barner, C.T. Rogers, A. Inam, R. Ramesh, and S. Bersey, Appl. Phys. Lett. 59 (1991) p. 1629.CrossRefGoogle Scholar
16.Gao, J., Aarnink, W.A.M., Gerritsma, G.J., Veldhuis, D., and Rogalla, H., IEEE Trans. Magn. 27 (1991) p. 3062.CrossRefGoogle Scholar
17.Hashimoto, T., Sagoi, M., Mizutani, Y., Yoshida, J., and Mizushima, K., Appl. Phys. Lett. 60 (1992) p. 1756.CrossRefGoogle Scholar
18.Poltrak, E., Koren, G., Cohen, D., Aharoni, E., and Deutscher, G., Phys. Rev. Lett. 67 (1991) p. 3038.CrossRefGoogle Scholar
19.Chin, D.K. and Van Duzer, T., Appl. Phys. Lett. 58 (1991) p. 753.CrossRefGoogle Scholar
20.Char, K., Colclough, M.S., Geballe, T.H., and Myers, K.E., Appl. Phys. Lett. 62 (1993) p. 196.CrossRefGoogle Scholar
21.Antognazza, L., Char, K., Geballe, T.H., L.King, L.H., and Sleight, A.W., Appl. Phys. Lett. 63 (1993) p. 1005.CrossRefGoogle Scholar
22.Char, K., Antognazza, L., and Geballe, T.H., Appl. Phys. Lett. 63 (1993) p. 2420.CrossRefGoogle Scholar
23.Antognazza, L., Char, K., and Geballe, T.H., submitted to Appl. Phys. Lett.Google Scholar
24.Char, K., Antognazza, L., and Geballe, T.H., to appear in Appl. Phys. Lett., August 1994.Google Scholar
25.Olsson, E. and Char, K., Appl. Phys. Lett. 64 (1994) p. 1292.CrossRefGoogle Scholar
26.Ramesh, R., Inam, A., Wilkens, B., Chan, W.K., Sands, T., Tarascon, J.M., Fork, D.K., Geballe, T.H., Evans, J., and Bullington, J., Appl. Phys. Lett. 59 (1991) p. 1782.CrossRefGoogle Scholar
27.Ramesh, R., Dutta, B., Ravi, T.S., Lee, J., Sands, T., and Keramidas, V.G., Appl. Phys. Lett. 64 (1994) p. 1588.CrossRefGoogle Scholar
28.Char, K., Lee, M., Barton, R.W., Bozovic, I., Marshall, A.F., Hammond, R.H., Beasley, M.R., Geballe, T.H., Kapitulnik, A., and Laderman, S.S., Phys. Rev. B 38 (1988) p. 834.CrossRefGoogle Scholar
29.Ihara, H., Tokiwa, K., Ozawa, H., Hirabayashi, M., Negishi, A., Matuhata, H., and Song, Y.S., preprint.Google Scholar